EdgeVLA: Efficient Vision-Language-Action Models
- URL: http://arxiv.org/abs/2507.14049v1
- Date: Fri, 18 Jul 2025 16:15:09 GMT
- Title: EdgeVLA: Efficient Vision-Language-Action Models
- Authors: Paweł Budzianowski, Wesley Maa, Matthew Freed, Jingxiang Mo, Winston Hsiao, Aaron Xie, Tomasz Młoduchowski, Viraj Tipnis, Benjamin Bolte,
- Abstract summary: This paper introduces Edge VLA, a novel approach designed to significantly enhance the inference speed of Vision-Language-Action (VLA) models.<n>We achieve this through two key innovations: 1) Eliminating the autoregressive requirement for end-effector position prediction, leading to a 7x speedup in inference, and 2) Leveraging the efficiency of Small Language Models (SLMs)<n>Our early results demonstrate that EVLA achieves comparable training characteristics to OpenVLA while offering substantial gains in inference speed and memory efficiency.
- Score: 0.4005096060512278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language Models (VLMs) have emerged as a promising approach to address the data scarcity challenge in robotics, enabling the development of generalizable visuomotor control policies. While models like OpenVLA showcase the potential of this paradigm, deploying large-scale VLMs on resource-constrained mobile manipulation systems remains a significant hurdle. This paper introduces Edge VLA (EVLA), a novel approach designed to significantly enhance the inference speed of Vision-Language-Action (VLA) models. EVLA maintains the representational power of these models while enabling real-time performance on edge devices. We achieve this through two key innovations: 1) Eliminating the autoregressive requirement for end-effector position prediction, leading to a 7x speedup in inference, and 2) Leveraging the efficiency of Small Language Models (SLMs), demonstrating comparable training performance to larger models with significantly reduced computational demands. Our early results demonstrate that EVLA achieves comparable training characteristics to OpenVLA while offering substantial gains in inference speed and memory efficiency. We release our model checkpoints and training \href{https://github.com/kscalelabs/evla }{codebase} to foster further research.
Related papers
- VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting [40.837048280287206]
Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language.<n>Current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss.<n>We develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost.
arXiv Detail & Related papers (2025-07-07T15:30:55Z) - Unified Vision-Language-Action Model [86.68814779303429]
We present UniVLA, a unified and native multimodal VLA model that autoregressively models vision, language, and action signals as discrete token sequences.<n>Our approach sets new state-of-the-art results across several widely used simulation benchmarks, including CALVIN, LIBERO, and Simplenv-Bridge.<n>We further demonstrate its broad applicability on real-world ALOHA manipulation and autonomous driving.
arXiv Detail & Related papers (2025-06-24T17:59:57Z) - SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration [69.54069477520534]
Vision-Language-Action (VLA) models have attracted increasing attention for their strong control capabilities.<n>Their high computational cost and low execution frequency hinder their suitability for real-time tasks such as robotic manipulation and autonomous navigation.<n>We propose SP-VLA, a unified framework that accelerates VLA models by jointly scheduling models and pruning tokens.
arXiv Detail & Related papers (2025-06-15T05:04:17Z) - Think Twice, Act Once: Token-Aware Compression and Action Reuse for Efficient Inference in Vision-Language-Action Models [30.7855782696894]
Vision-Language-Action (VLA) models have emerged as a powerful paradigm for general-purpose robot control through natural language instructions.<n>We propose FlashVLA, the first training-free and plug-and-play acceleration framework that enables action reuse in VLA models.
arXiv Detail & Related papers (2025-05-27T13:47:18Z) - CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models [89.44024245194315]
We introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs)<n>We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens.<n>Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks.
arXiv Detail & Related papers (2025-03-27T22:23:04Z) - Fine-Tuning Vision-Language-Action Models: Optimizing Speed and Success [100.226572152954]
We present an optimized fine-tuning recipe for vision-language-action models (VLAs)<n>Our recipe boosts OpenVLA's average success rate across four task suites from 76.5% to 97.1% while increasing action generation throughput by 26$times$.<n>In real-world evaluations, our fine-tuning recipe enables OpenVLA to successfully execute dexterous, high-frequency control tasks on a bimanual ALOHA robot.
arXiv Detail & Related papers (2025-02-27T00:30:29Z) - Improving Vision-Language-Action Model with Online Reinforcement Learning [17.043068379668842]
Recent studies have successfully integrated large vision-language models into low-level robotic control by supervised fine-tuning.<n>We propose iRe-VLA framework, which iterates between Reinforcement Learning and Supervised Learning to effectively improve VLA models.
arXiv Detail & Related papers (2025-01-28T02:53:48Z) - CogACT: A Foundational Vision-Language-Action Model for Synergizing Cognition and Action in Robotic Manipulation [100.25567121604382]
Vision-Language-Action (VLA) models have improved robotic manipulation in terms of language-guided task execution and generalization to unseen scenarios.<n>We present a new advanced VLA architecture derived from Vision-Language-Models (VLM)<n>We show that our model not only significantly surpasses existing VLAs in task performance and but also exhibits remarkable adaptation to new robots and generalization to unseen objects and backgrounds.
arXiv Detail & Related papers (2024-11-29T12:06:03Z) - TinyVLA: Towards Fast, Data-Efficient Vision-Language-Action Models for Robotic Manipulation [32.406783380729024]
Vision-Language-Action (VLA) models have shown remarkable potential in visuomotor control and instruction comprehension through end-to-end learning processes.<n>Current VLA models face significant challenges: they are slow during inference and require extensive pre-training on large amounts of robotic data.<n>We introduce a new family of compact vision-language-action models, called TinyVLA, which offers two key advantages over existing VLA models.
arXiv Detail & Related papers (2024-09-19T07:10:18Z) - OpenVLA: An Open-Source Vision-Language-Action Model [131.74098076670103]
We introduce OpenVLA, an open-source VLA trained on a diverse collection of 970k real-world robot demonstrations.
OpenVLA shows strong results for generalist manipulation, outperforming closed models such as RT-2-X (55B) by 16.5% in absolute task success rate.
We release model checkpoints, fine-tuning notebooks, and our PyTorch with built-in support for training VLAs at scale on Open X-Embodiment datasets.
arXiv Detail & Related papers (2024-06-13T15:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.