Writing Like the Best: Exemplar-Based Expository Text Generation
- URL: http://arxiv.org/abs/2505.18859v1
- Date: Sat, 24 May 2025 20:40:39 GMT
- Title: Writing Like the Best: Exemplar-Based Expository Text Generation
- Authors: Yuxiang Liu, Kevin Chen-Chuan Chang,
- Abstract summary: We introduce the Exemplar-Based Expository Text Generation task, aiming to generate an expository text on a new topic using an exemplar on a similar topic.<n>Current methods fall short due to their reliance on extensive exemplar data, difficulty in adapting topic-specific content, and issues with long-text coherence.<n>We propose the concept of Adaptive Imitation and present a novel Recurrent Plan-then-Adapt framework.
- Score: 23.631195575124924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the Exemplar-Based Expository Text Generation task, aiming to generate an expository text on a new topic using an exemplar on a similar topic. Current methods fall short due to their reliance on extensive exemplar data, difficulty in adapting topic-specific content, and issues with long-text coherence. To address these challenges, we propose the concept of Adaptive Imitation and present a novel Recurrent Plan-then-Adapt (RePA) framework. RePA leverages large language models (LLMs) for effective adaptive imitation through a fine-grained plan-then-adapt process. RePA also enables recurrent segment-by-segment imitation, supported by two memory structures that enhance input clarity and output coherence. We also develop task-specific evaluation metrics--imitativeness, adaptiveness, and adaptive-imitativeness--using LLMs as evaluators. Experimental results across our collected three diverse datasets demonstrate that RePA surpasses existing baselines in producing factual, consistent, and relevant texts for this task.
Related papers
- CAAD: Context-Aware Adaptive Decoding for Truthful Text Generation [31.469511576774252]
We propose a context-aware adaptive decoding method for large language models.<n>Our approach achieves a 2.8 percent average improvement on TruthfulQA.<n>Our model-agnostic, scalable, and efficient method requires only a single generation pass.
arXiv Detail & Related papers (2025-08-04T08:28:25Z) - Aspect-Based Summarization with Self-Aspect Retrieval Enhanced Generation [23.801244006016972]
Aspect-based summarization aims to generate summaries tailored to specific aspects.<n>We propose a novel framework for aspect-based summarization: Self-Aspect Retrieval Enhanced Summary Generation.
arXiv Detail & Related papers (2025-04-17T16:09:57Z) - Personalized Text Generation with Contrastive Activation Steering [63.60368120937822]
We propose a training-free framework that disentangles and represents personalized writing style as a vector.<n>Our framework achieves a significant 8% relative improvement in personalized generation while reducing storage requirements by 1700 times over PEFT method.
arXiv Detail & Related papers (2025-03-07T08:07:15Z) - RAPID: Efficient Retrieval-Augmented Long Text Generation with Writing Planning and Information Discovery [69.41989381702858]
Existing methods, such as direct generation and multi-agent discussion, often struggle with issues like hallucinations, topic incoherence, and significant latency.<n>We propose RAPID, an efficient retrieval-augmented long text generation framework.<n>Our work provides a robust and efficient solution to the challenges of automated long-text generation.
arXiv Detail & Related papers (2025-03-02T06:11:29Z) - Few-Shot, No Problem: Descriptive Continual Relation Extraction [27.296604792388646]
Few-shot Continual Relation Extraction is a crucial challenge for enabling AI systems to identify and adapt to evolving relationships in real-world domains.<n>Traditional memory-based approaches often overfit to limited samples, failing to reinforce old knowledge.<n>We propose a novel retrieval-based solution, starting with a large language model to generate descriptions for each relation.
arXiv Detail & Related papers (2025-02-27T23:44:30Z) - ChallengeMe: An Adversarial Learning-enabled Text Summarization Framework [7.34943328546274]
This paper constructs an adversarial learning-based prompt framework named ChallengeMe.<n>It includes three cascaded solutions: generation prompts, evaluation prompts, and feedback optimization.<n>The results of mixed case studies on the text summarization task show that the proposed framework can generate more accurate and fluent text summaries.
arXiv Detail & Related papers (2025-02-07T16:59:34Z) - Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
Machine-generated content poses challenges such as academic plagiarism and the spread of misinformation.<n>We introduce novel methodologies and datasets to overcome these challenges.<n>We propose MhBART, an encoder-decoder model designed to emulate human writing style.<n>We also propose DTransformer, a model that integrates discourse analysis through PDTB preprocessing to encode structural features.
arXiv Detail & Related papers (2024-12-17T08:47:41Z) - Meta-Chunking: Learning Text Segmentation and Semantic Completion via Logical Perception [10.614437503578856]
This paper proposes the Meta-Chunking framework, which specifically enhances chunking quality.<n>We design two adaptive chunking techniques based on uncertainty, namely Perplexity Chunking and Margin Sampling Chunking.<n>We establish the global information compensation mechanism, encompassing a two-stage hierarchical summary generation process and a three-stage text chunk rewriting procedure.
arXiv Detail & Related papers (2024-10-16T17:59:32Z) - TS-HTFA: Advancing Time Series Forecasting via Hierarchical Text-Free Alignment with Large Language Models [14.411646409316624]
We introduce textbfHierarchical textbfText-textbfFree textbfAlignment (textbfTS-HTFA), a novel method for time-series forecasting.<n>We replace paired text data with adaptive virtual text based on QR decomposition word embeddings and learnable prompt.<n>Experiments on multiple time-series benchmarks demonstrate that HTFA achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-09-23T12:57:24Z) - Beat: Bi-directional One-to-Many Embedding Alignment for Text-based Person Retrieval [66.61856014573742]
Text-based person retrieval (TPR) is a challenging task that involves retrieving a specific individual based on a textual description.
Previous methods have attempted to align text and image samples in a modal-shared space.
We propose an effective bi-directional one-to-many embedding paradigm that offers a clear optimization direction for each sample.
arXiv Detail & Related papers (2024-06-09T03:06:55Z) - Instilling Multi-round Thinking to Text-guided Image Generation [72.2032630115201]
Single-round generation often overlooks crucial details, particularly in the realm of fine-grained changes like shoes or sleeves.
We introduce a new self-supervised regularization, ie, multi-round regularization, which is compatible with existing methods.
It builds upon the observation that the modification order generally should not affect the final result.
arXiv Detail & Related papers (2024-01-16T16:19:58Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
We propose TextFormer, a query-based end-to-end text spotter with Transformer architecture.
TextFormer builds upon an image encoder and a text decoder to learn a joint semantic understanding for multi-task modeling.
It allows for mutual training and optimization of classification, segmentation, and recognition branches, resulting in deeper feature sharing.
arXiv Detail & Related papers (2023-06-06T03:37:41Z) - Learning to Select Bi-Aspect Information for Document-Scale Text Content
Manipulation [50.01708049531156]
We focus on a new practical task, document-scale text content manipulation, which is the opposite of text style transfer.
In detail, the input is a set of structured records and a reference text for describing another recordset.
The output is a summary that accurately describes the partial content in the source recordset with the same writing style of the reference.
arXiv Detail & Related papers (2020-02-24T12:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.