Security Concerns for Large Language Models: A Survey
- URL: http://arxiv.org/abs/2505.18889v2
- Date: Sat, 31 May 2025 21:25:09 GMT
- Title: Security Concerns for Large Language Models: A Survey
- Authors: Miles Q. Li, Benjamin C. M. Fung,
- Abstract summary: Large Language Models (LLMs) have caused a revolution in natural language processing, but their capabilities also introduce new security vulnerabilities.<n>We provide a comprehensive overview of the emerging security concerns around LLMs, categorizing threats into prompt injection and jailbreaking, adversarial attacks such as input perturbations and data poisoning, and worrisome risks inherent in autonomous LLM agents.<n>We conclude by emphasizing the importance of advancing robust, multi-layered security strategies to ensure LLMs are safe and beneficial.
- Score: 3.175227858236288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) such as GPT-4 and its recent iterations, Google's Gemini, Anthropic's Claude 3 models, and xAI's Grok have caused a revolution in natural language processing, but their capabilities also introduce new security vulnerabilities. In this survey, we provide a comprehensive overview of the emerging security concerns around LLMs, categorizing threats into prompt injection and jailbreaking, adversarial attacks such as input perturbations and data poisoning, misuse by malicious actors for purposes such as generating disinformation, phishing emails, and malware, and worrisome risks inherent in autonomous LLM agents. A significant focus has been recently placed on the latter, exploring goal misalignment, emergent deception, self-preservation instincts, and the potential for LLMs to develop and pursue covert, misaligned objectives, a behavior known as scheming, which may even persist through safety training. We summarize recent academic and industrial studies from 2022 to 2025 that exemplify each threat, analyze proposed defenses and their limitations, and identify open challenges in securing LLM-based applications. We conclude by emphasizing the importance of advancing robust, multi-layered security strategies to ensure LLMs are safe and beneficial.
Related papers
- A Survey of Attacks on Large Language Models [5.845689496906739]
Large language models (LLMs) and LLM-based agents have been widely deployed in a wide range of applications in the real world.<n>This paper provides a systematic overview of the details of adversarial attacks targeting both LLMs and LLM-based agents.
arXiv Detail & Related papers (2025-05-18T22:55:16Z) - Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
A high volume of recent ML security literature focuses on attacks against aligned large language models (LLMs)<n>In this paper, we analyze security and privacy vulnerabilities that are unique to LLM agents.<n>We conduct a series of illustrative attacks on popular open-source and commercial agents, demonstrating the immediate practical implications of their vulnerabilities.
arXiv Detail & Related papers (2025-02-12T17:19:36Z) - Emerging Security Challenges of Large Language Models [6.151633954305939]
Large language models (LLMs) have achieved record adoption in a short period of time across many different sectors.<n>They are open-ended models trained on diverse data without being tailored for specific downstream tasks.<n>Traditional Machine Learning (ML) models are vulnerable to adversarial attacks.
arXiv Detail & Related papers (2024-12-23T14:36:37Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - Defining and Evaluating Physical Safety for Large Language Models [62.4971588282174]
Large Language Models (LLMs) are increasingly used to control robotic systems such as drones.
Their risks of causing physical threats and harm in real-world applications remain unexplored.
We classify the physical safety risks of drones into four categories: (1) human-targeted threats, (2) object-targeted threats, (3) infrastructure attacks, and (4) regulatory violations.
arXiv Detail & Related papers (2024-11-04T17:41:25Z) - Recent Advances in Attack and Defense Approaches of Large Language Models [27.271665614205034]
Large Language Models (LLMs) have revolutionized artificial intelligence and machine learning through their advanced text processing and generating capabilities.<n>Their widespread deployment has raised significant safety and reliability concerns.<n>This paper reviews current research on LLM vulnerabilities and threats, and evaluates the effectiveness of contemporary defense mechanisms.
arXiv Detail & Related papers (2024-09-05T06:31:37Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
We present Purple-teaming LLMs with Adversarial Defender training (PAD)
PAD is a pipeline designed to safeguard LLMs by novelly incorporating the red-teaming (attack) and blue-teaming (safety training) techniques.
PAD significantly outperforms existing baselines in both finding effective attacks and establishing a robust safe guardrail.
arXiv Detail & Related papers (2024-07-01T23:25:30Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
We conduct a comprehensive review of the literature on the application of Large Language Models in cybersecurity (LLM4Security)<n>We observe that LLMs are being applied to a wide range of cybersecurity tasks, including vulnerability detection, malware analysis, network intrusion detection, and phishing detection.<n>Third, we identify several promising techniques for adapting LLMs to specific cybersecurity domains, such as fine-tuning, transfer learning, and domain-specific pre-training.
arXiv Detail & Related papers (2024-05-08T02:09:17Z) - Securing Large Language Models: Threats, Vulnerabilities and Responsible Practices [4.593170087121314]
Large language models (LLMs) have significantly transformed the landscape of Natural Language Processing (NLP)<n>This research paper thoroughly investigates security and privacy concerns related to LLMs from five thematic perspectives.<n>The paper recommends promising avenues for future research to enhance the security and risk management of LLMs.
arXiv Detail & Related papers (2024-03-19T07:10:58Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z) - Use of LLMs for Illicit Purposes: Threats, Prevention Measures, and
Vulnerabilities [14.684194175806203]
Large language models (LLMs) can be misused for fraud, impersonation, and the generation of malware.
We present a taxonomy describing the relationship between threats caused by the generative capabilities of LLMs, prevention measures intended to address such threats, and vulnerabilities arising from imperfect prevention measures.
arXiv Detail & Related papers (2023-08-24T14:45:50Z) - Visual Adversarial Examples Jailbreak Aligned Large Language Models [66.53468356460365]
We show that the continuous and high-dimensional nature of the visual input makes it a weak link against adversarial attacks.
We exploit visual adversarial examples to circumvent the safety guardrail of aligned LLMs with integrated vision.
Our study underscores the escalating adversarial risks associated with the pursuit of multimodality.
arXiv Detail & Related papers (2023-06-22T22:13:03Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.