論文の概要: Weaver: Interweaving SQL and LLM for Table Reasoning
- arxiv url: http://arxiv.org/abs/2505.18961v1
- Date: Sun, 25 May 2025 03:27:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:42.784016
- Title: Weaver: Interweaving SQL and LLM for Table Reasoning
- Title(参考訳): Weaver:テーブル推論のためのSQLとLLMのインターウィービング
- Authors: Rohit Khoja, Devanshu Gupta, Yanjie Fu, Dan Roth, Vivek Gupta,
- Abstract要約: Weaverは、構造化データ検索のためのsqlとセマンティック処理のためのLLMを組み合わせたフレキシブルなステップバイステッププランを生成する。
Weaverは、4つのTableQAデータセットの最先端メソッドを一貫して上回り、API呼び出しとエラー率の両方を削減する。
- 参考スコア(独自算出の注目度): 63.09519234853953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Querying tables with unstructured data is challenging due to the presence of text (or image), either embedded in the table or in external paragraphs, which traditional SQL struggles to process, especially for tasks requiring semantic reasoning. While Large Language Models (LLMs) excel at understanding context, they face limitations with long input sequences. Existing approaches that combine SQL and LLMs typically rely on rigid, predefined work-flows, limiting their adaptability to complex queries. To address these issues, we introduce Weaver , a modular pipeline that dynamically integrates SQL and LLMs for table-based question answering (TableQA). Weaver generates a flexible, step-by-step plan that combines SQL for structured data retrieval with LLMs for semantic processing. By decomposing complex queries into manageable subtasks, Weaver improves accuracy and generalization. Our experiments show that Weaver consistently outperforms state-of-the-art methods across four TableQA datasets, reducing both API calls and error rates.
- Abstract(参考訳): 構造化されていないデータでテーブルをクエリするのは、テーブルや外部の段落に埋め込まれたテキスト(または画像)が存在するため、難しい。
LLM(Large Language Models)はコンテキストを理解するのに優れているが、長い入力シーケンスの制限に直面している。
SQLとLLMを組み合わせた既存のアプローチは、通常、厳格で定義された作業フローに依存し、複雑なクエリへの適応性を制限する。
これらの問題に対処するために、テーブルベースの質問応答(TableQA)のためのSQLとLLMを動的に統合するモジュールパイプラインであるWeaverを紹介します。
Weaverは、構造化データ検索用のSQLとセマンティック処理用のLLMを組み合わせた、フレキシブルでステップバイステップのプランを生成する。
複雑なクエリを管理可能なサブタスクに分解することで、Weaverは精度と一般化を改善します。
我々の実験によると、Weaverは4つのTableQAデータセットで最先端のメソッドを一貫して上回り、API呼び出しとエラー率の両方を削減しています。
関連論文リスト
- UNJOIN: Enhancing Multi-Table Text-to-SQL Generation via Schema Simplification [50.59009084277447]
論理生成からスキーマ要素の検索を分離するフレームワークUNJOINを紹介する。
最初の段階では、各列をテーブル名でプレフィックスすることで、データベース内のすべてのテーブルの列名を単一のテーブル表現にマージします。
第2段階では、クエリは、この単純化されたスキーマに基づいて生成され、JOIN、UNION、リレーショナルロジックを再構築することで、元のスキーマにマップされる。
論文 参考訳(メタデータ) (2025-05-23T17:28:43Z) - RoundTable: Leveraging Dynamic Schema and Contextual Autocomplete for Enhanced Query Precision in Tabular Question Answering [11.214912072391108]
現実世界のデータセットは、大きな属性と複雑な値の配列を特徴とすることが多い。
従来の手法ではデータセットのサイズと複雑さをLarge Language Modelsに完全にリレーすることはできません。
入力テーブル上でFTS(Full-Text Search)を利用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-22T13:13:06Z) - TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools [51.576974932743596]
大規模言語モデル(LLM)は、テキスト間の情報の集約を必要とするクエリではよく機能しないことが多い。
TACTには、1つ以上のテキストに散らばる縫合情報を要求する難しい命令が含まれている。
既存のテキストと関連するテーブルのデータセットを活用することで、このデータセットを構築します。
現代のLLMはいずれも,このデータセットでは性能が悪く,精度が38%以下であることが実証された。
論文 参考訳(メタデータ) (2024-06-05T20:32:56Z) - MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL [47.120862170230566]
最近のText-to-Yourselfメソッドは通常、"巨大な"データベース上での大幅なパフォーマンス劣化に悩まされる。
我々は,新しいテキスト・ツー・ユー・セルフ LLM ベースのマルチエージェント協調フレームワーク MAC を紹介する。
我々のフレームワークでは、GPT-4を全てのエージェントタスクの強力なバックボーンとして利用し、フレームワークの上限を決定する。
次に、Code 7Bを活用することで、オープンソースの命令フォローモデルであるsql-Llamaを微調整し、GPT-4のように全てのタスクを達成します。
論文 参考訳(メタデータ) (2023-12-18T14:40:20Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
テーブルベースタスクにおいて,大規模言語モデル(LLM)を効果的に活用するための汎用プリプロセッサスイートとして,TAP4LLMを提案する。
1)大きなテーブルをクエリセマンティクスに基づいて管理可能なサブテーブルに分解するテーブルサンプリング、(2)外部ソースやモデルから追加の知識でテーブルを拡張するテーブル拡張、(3)テーブルパッキングとシリアライゼーションによりテーブルをLLMの理解に適したさまざまなフォーマットに変換する。
論文 参考訳(メタデータ) (2023-12-14T15:37:04Z) - Retrieval-augmented GPT-3.5-based Text-to-SQL Framework with
Sample-aware Prompting and Dynamic Revision Chain [21.593701177605652]
サンプルと動的リビジョンチェーンを含むテキスト・ツー・アウェア・プロンプト・フレームワークを提案する。
提案手法は,質問項目のサンプルと詳細な情報を含む。
人間の介入なしに実行可能で正確なスクルを生成するために、我々は、きめ細かいフィードバックを反復的に適応する動的リビジョンチェーンを設計する。
論文 参考訳(メタデータ) (2023-07-11T07:16:22Z) - Dual Reader-Parser on Hybrid Textual and Tabular Evidence for Open
Domain Question Answering [78.9863753810787]
世界の知識は構造化データベースに保存されている。
クエリ言語は、複雑な推論を必要とする質問に答えるだけでなく、完全な説明可能性を提供することができる。
論文 参考訳(メタデータ) (2021-08-05T22:04:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。