論文の概要: Faithful Group Shapley Value
- arxiv url: http://arxiv.org/abs/2505.19013v1
- Date: Sun, 25 May 2025 07:32:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:42.834992
- Title: Faithful Group Shapley Value
- Title(参考訳): Faithful Group Shapley Value
- Authors: Kiljae Lee, Ziqi Liu, Weijing Tang, Yuan Zhang,
- Abstract要約: Data Shapleyのグループレベルの拡張は、シェル企業の攻撃に対して脆弱である。
本研究では,Fithful Group Shapley Value 計算のための高速かつ高精度な近似アルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 15.358432534524184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data Shapley is an important tool for data valuation, which quantifies the contribution of individual data points to machine learning models. In practice, group-level data valuation is desirable when data providers contribute data in batch. However, we identify that existing group-level extensions of Data Shapley are vulnerable to shell company attacks, where strategic group splitting can unfairly inflate valuations. We propose Faithful Group Shapley Value (FGSV) that uniquely defends against such attacks. Building on original mathematical insights, we develop a provably fast and accurate approximation algorithm for computing FGSV. Empirical experiments demonstrate that our algorithm significantly outperforms state-of-the-art methods in computational efficiency and approximation accuracy, while ensuring faithful group-level valuation.
- Abstract(参考訳): Data Shapleyは、個々のデータポイントの機械学習モデルへのコントリビューションを定量化する、データバリュエーションのための重要なツールである。
実際には、データプロバイダがバッチでデータをコントリビュートする場合、グループレベルのデータバリュエーションが望ましい。
しかし、既存のData Shapleyのグループレベルの拡張は、戦略的なグループ分割がバリュエーションを不当に増加させるようなシェル企業の攻撃に対して脆弱である。
我々は、このような攻撃に対して一意に防御するFithful Group Shapley Value (FGSV)を提案する。
元の数学的洞察に基づいて、我々はFGSVを計算するための証明可能な高速かつ正確な近似アルゴリズムを開発した。
実験により,本アルゴリズムは,忠実なグループレベルの評価を確保しつつ,計算効率と近似精度において最先端の手法を著しく上回ることを示した。
関連論文リスト
- Losing is for Cherishing: Data Valuation Based on Machine Unlearning and Shapley Value [18.858879113762917]
我々は、機械学習を利用してデータ値を効率的に推定する新しいフレームワークUnlearning Shapleyを提案する。
提案手法は,モンテカルロサンプリングによるシェープリー値の計算を行い,再学習を回避し,全データへの依存を排除した。
この作業は、データバリュエーション理論と実践的デプロイメントのギャップを埋め、現代のAIエコシステムにスケーラブルでプライバシに準拠したソリューションを提供する。
論文 参考訳(メタデータ) (2025-05-22T02:46:03Z) - DUPRE: Data Utility Prediction for Efficient Data Valuation [49.60564885180563]
Data Shapleyのような協調ゲーム理論に基づくデータ評価では、データユーティリティを評価し、複数のデータサブセットに対してMLモデルを再トレーニングする必要がある。
我々のフレームワークである textttDUPRE は、モデル再学習による評価ではなく、データユーティリティを予測することによって、サブセット評価当たりのコストを削減できる代替手法を採用しています。
具体的には、いくつかのデータサブセットのデータユーティリティを評価すると、textttDUPREは、他のすべてのデータサブセットの有用性を予測するために、emphGaussianプロセス(GP)回帰モデルに適合する。
論文 参考訳(メタデータ) (2025-02-22T08:53:39Z) - A structured regression approach for evaluating model performance across intersectional subgroups [53.91682617836498]
分散評価(disaggregated evaluation)は、AIフェアネスアセスメントにおける中心的なタスクであり、AIシステムのさまざまなサブグループ間でのパフォーマンスを測定することを目的としている。
非常に小さなサブグループであっても,信頼性の高いシステム性能推定値が得られることを示す。
論文 参考訳(メタデータ) (2024-01-26T14:21:45Z) - Accelerated Shapley Value Approximation for Data Evaluation [3.707457963532597]
機械学習問題の構造的特性を活用することにより,データポイントのシェープ値をより効率的に近似できることを示す。
我々の分析は、データバリュエーションの文脈において、小さなサブセットで訓練されたモデルはより重要であることを示唆している。
論文 参考訳(メタデータ) (2023-11-09T13:15:36Z) - DU-Shapley: A Shapley Value Proxy for Efficient Dataset Valuation [23.646508094051768]
我々は、データセットのバリュエーションの問題、すなわち、インクリメンタルゲインを定量化する問題を考える。
Shapleyの値は、その正式な公理的正当化のためにデータセットのバリュエーションを実行する自然なツールである。
本稿では,離散一様分布下での予測として表現される離散一様シャプリーと呼ばれる新しい近似を提案する。
論文 参考訳(メタデータ) (2023-06-03T10:22:50Z) - Differentially Private Shapley Values for Data Evaluation [3.616258473002814]
共有値は計算コストが高く、データセット全体を含んでいる。
そこで本研究では,階層型シェープアルゴリズム(Layered Shapley Algorithm)と呼ばれる新しい近似法を提案する。
本手法は, 確率的精度を保証するために, データの小さな (O(polylog(n))) ランダムサンプルと小さな (O(log n)$) 連立関係で動作することを示す。
論文 参考訳(メタデータ) (2022-06-01T14:14:24Z) - Towards Group Robustness in the presence of Partial Group Labels [61.33713547766866]
入力サンプルとターゲットラベルの間に 急激な相関関係がある ニューラルネットワークの予測を誤った方向に導く
本稿では,制約セットから最悪のグループ割り当てを最適化するアルゴリズムを提案する。
グループ間で総合的な集計精度を維持しつつ,少数集団のパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2022-01-10T22:04:48Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z) - Towards Efficient Data Valuation Based on the Shapley Value [65.4167993220998]
本稿では,Shapley値を用いたデータ評価の問題点について検討する。
Shapleyの値は、データ値の概念に対して多くのデシダータを満たすユニークなペイオフスキームを定義する。
本稿では,Shapley値を近似する効率的なアルゴリズムのレパートリーを提案する。
論文 参考訳(メタデータ) (2019-02-27T00:22:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。