When Models Don't Collapse: On the Consistency of Iterative MLE
- URL: http://arxiv.org/abs/2505.19046v1
- Date: Sun, 25 May 2025 08:50:46 GMT
- Title: When Models Don't Collapse: On the Consistency of Iterative MLE
- Authors: Daniel Barzilai, Ohad Shamir,
- Abstract summary: We study model collapse for maximum likelihood estimation (MLE)<n>We establish non-asymptotic bounds showing that collapse can be avoided even as the fraction of real data vanishes.<n>We prove that some assumptions (beyond MLE consistency) are indeed necessary.
- Score: 34.99810116340191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread use of generative models has created a feedback loop, in which each generation of models is trained on data partially produced by its predecessors. This process has raised concerns about \emph{model collapse}: A critical degradation in performance caused by repeated training on synthetic data. However, different analyses in the literature have reached different conclusions as to the severity of model collapse. As such, it remains unclear how concerning this phenomenon is, and under which assumptions it can be avoided. To address this, we theoretically study model collapse for maximum likelihood estimation (MLE), in a natural setting where synthetic data is gradually added to the original data set. Under standard assumptions (similar to those long used for proving asymptotic consistency and normality of MLE), we establish non-asymptotic bounds showing that collapse can be avoided even as the fraction of real data vanishes. On the other hand, we prove that some assumptions (beyond MLE consistency) are indeed necessary: Without them, model collapse can occur arbitrarily quickly, even when the original data is still present in the training set. To the best of our knowledge, these are the first rigorous examples of iterative generative modeling with accumulating data that rapidly leads to model collapse.
Related papers
- A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops [55.07063067759609]
High-quality data is essential for training large generative models, yet the vast reservoir of real data available online has become nearly depleted.<n>Models increasingly generate their own data for further training, forming Self-consuming Training Loops (STLs)<n>Some models degrade or even collapse, while others successfully avoid these failures, leaving a significant gap in theoretical understanding.
arXiv Detail & Related papers (2025-02-26T06:18:13Z) - Rate of Model Collapse in Recursive Training [13.722324504719282]
We ask how fast model collapse occurs for some well-studied distribution families under maximum likelihood (ML or near ML) estimation.<n>Surprisingly, even for fundamental distributions such as discrete and Gaussian distributions, the exact rate of model collapse is unknown.<n>Our results show that for discrete distributions, the time to forget a word is approximately linearly dependent on the number of times it occurred in the original corpus.
arXiv Detail & Related papers (2024-12-23T15:21:50Z) - Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences [20.629333587044012]
We study the impact of data curation on iterated retraining of generative models.
We prove that, if the data is curated according to a reward model, the expected reward of the iterative retraining procedure is maximized.
arXiv Detail & Related papers (2024-06-12T21:28:28Z) - How Bad is Training on Synthetic Data? A Statistical Analysis of Language Model Collapse [9.59833542807268]
Model collapse occurs when new models are trained on synthetic data generated from previously trained models.
We show that model collapse cannot be avoided when training solely on synthetic data.
We estimate a maximal amount of synthetic data below which model collapse can eventually be avoided.
arXiv Detail & Related papers (2024-04-07T22:15:13Z) - Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
We study the learning dynamics of generative models that are fed back their own produced content in addition to their original training dataset.
We show that, unless a sufficient amount of external data is introduced at each iteration, any non-trivial temperature leads the model to degenerate.
arXiv Detail & Related papers (2024-04-02T21:51:39Z) - Is Model Collapse Inevitable? Breaking the Curse of Recursion by Accumulating Real and Synthetic Data [49.73114504515852]
We show that replacing the original real data by each generation's synthetic data does indeed tend towards model collapse.
We demonstrate that accumulating the successive generations of synthetic data alongside the original real data avoids model collapse.
arXiv Detail & Related papers (2024-04-01T18:31:24Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Model Collapse Demystified: The Case of Regression [12.115359951879462]
We study the phenomenon of "model collapse" in the era of proliferation of large language and image generation models.
We obtain analytic formulae which quantitatively outline this phenomenon in a broad range of regimes.
We propose a simple strategy based on adaptive regularization to mitigate model collapse.
arXiv Detail & Related papers (2024-02-12T15:26:01Z) - Discovering Mixtures of Structural Causal Models from Time Series Data [23.18511951330646]
We propose a general variational inference-based framework called MCD to infer the underlying causal models.
Our approach employs an end-to-end training process that maximizes an evidence-lower bound for the data likelihood.
We demonstrate that our method surpasses state-of-the-art benchmarks in causal discovery tasks.
arXiv Detail & Related papers (2023-10-10T05:13:10Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
We study the impact of training generative models on mixed datasets.
We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough.
We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-09-30T16:41:04Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
We propose Contrastive Model Inversion, where the data diversity is explicitly modeled as an optimizable objective.
Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination.
Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI achieves significantly superior performance when the generated data are used for knowledge distillation.
arXiv Detail & Related papers (2021-05-18T15:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.