論文の概要: Saliency-guided Emotion Modeling: Predicting Viewer Reactions from Video Stimuli
- arxiv url: http://arxiv.org/abs/2505.19178v1
- Date: Sun, 25 May 2025 14:52:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:42.95587
- Title: Saliency-guided Emotion Modeling: Predicting Viewer Reactions from Video Stimuli
- Title(参考訳): サイリエンシ誘導感情モデリング:映像刺激による視聴者反応の予測
- Authors: Akhila Yaragoppa, Siddharth,
- Abstract要約: 本稿では,2つの重要な特徴を抽出し,感情予測のための新しい唾液量に基づくアプローチを提案する。
HD2SサリエンシモデルとOpenFace顔動作単位分析を用いて,映像のサリエンシと視聴者の感情の関係について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the emotional impact of videos is crucial for applications in content creation, advertising, and Human-Computer Interaction (HCI). Traditional affective computing methods rely on self-reported emotions, facial expression analysis, and biosensing data, yet they often overlook the role of visual saliency -- the naturally attention-grabbing regions within a video. In this study, we utilize deep learning to introduce a novel saliency-based approach to emotion prediction by extracting two key features: saliency area and number of salient regions. Using the HD2S saliency model and OpenFace facial action unit analysis, we examine the relationship between video saliency and viewer emotions. Our findings reveal three key insights: (1) Videos with multiple salient regions tend to elicit high-valence, low-arousal emotions, (2) Videos with a single dominant salient region are more likely to induce low-valence, high-arousal responses, and (3) Self-reported emotions often misalign with facial expression-based emotion detection, suggesting limitations in subjective reporting. By leveraging saliency-driven insights, this work provides a computationally efficient and interpretable alternative for emotion modeling, with implications for content creation, personalized media experiences, and affective computing research.
- Abstract(参考訳): ビデオの感情的影響を理解することは、コンテンツ制作、広告、ヒューマン・コンピュータ・インタラクション(HCI)の応用に不可欠である。
従来の感情コンピューティング手法は、自己報告された感情、表情分析、バイオセンシングデータに頼っているが、ビデオ内の自然に注意を引く領域である視覚的快楽の役割を見落としていることが多い。
本研究では, 深層学習を用いて, 感情予測の新たなアプローチを導入し, 主観領域と主観領域の数という2つの重要な特徴を抽出した。
HD2SサリエンシモデルとOpenFace顔動作単位分析を用いて,映像のサリエンシと視聴者の感情の関係について検討した。
以上の結果より,(1)高頻度,低覚醒感,(2)高情動感,(3)低情動感,高覚醒感,(3)自己申告感情は表情に基づく感情検出と誤認されることが多く,主観的報告の限界が示唆された。
この研究は、サリエンシ駆動の洞察を活用することで、感情モデリングの計算的かつ解釈可能な代替手段を提供し、コンテンツ作成、パーソナライズされたメディア体験、感情コンピューティング研究に影響を及ぼす。
関連論文リスト
- Enhancing the Prediction of Emotional Experience in Movies using Deep
Neural Networks: The Significance of Audio and Language [0.0]
本稿では、映画視聴中に経験した人間の感情の範囲を正確に予測するために、ディープニューラルネットワークモデルを活用することに焦点を当てる。
この設定では、経験的感情に大きく影響を与える3つの明確な入力モダリティが存在する:RGBビデオフレームから派生した視覚的手がかり、音声、音声、音楽を含む聴覚的要素、アクターの対話を含む言語的要素である。
論文 参考訳(メタデータ) (2023-06-17T17:40:27Z) - How Would The Viewer Feel? Estimating Wellbeing From Video Scenarios [73.24092762346095]
情緒応答と主観的幸福感に注釈を付けた6万本以上のビデオを備えた大規模データセットを2つ導入した。
Video Cognitive Empathyデータセットには、微粒な感情応答の分布のためのアノテーションが含まれており、モデルが感情状態の詳細な理解を得ることができる。
Video to Valenceデータセットには、ビデオ間の相対的な快適性のアノテーションが含まれている。
論文 参考訳(メタデータ) (2022-10-18T17:58:25Z) - Attention-based Region of Interest (ROI) Detection for Speech Emotion
Recognition [4.610756199751138]
本研究では,深部脳神経回路網における注意機構を用いて,人間の感情的音声/ビデオにおいてより感情的に有意な関心領域(ROI)を検出することを提案する。
6つの基本的な人間の感情を認識する多クラス分類タスクにおいて,提案した注目ネットワークと最先端のLSTMモデルの性能を比較した。
論文 参考訳(メタデータ) (2022-03-03T22:01:48Z) - SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network [83.27291945217424]
画像から感情を予測するために,SOLVER(Scene-Object Interrelated Visual Emotion Reasoning Network)を提案する。
異なるオブジェクト間の感情関係を掘り下げるために、まずセマンティックな概念と視覚的特徴に基づいて感情グラフを構築します。
また、シーンとオブジェクトを統合するScene-Object Fusion Moduleを設計し、シーンの特徴を利用して、提案したシーンベースのアテンションメカニズムでオブジェクトの特徴の融合プロセスを導出する。
論文 参考訳(メタデータ) (2021-10-24T02:41:41Z) - Affective Image Content Analysis: Two Decades Review and New
Perspectives [132.889649256384]
我々は,過去20年間の情緒的イメージコンテンツ分析(AICA)の発展を包括的にレビューする。
我々は、感情的ギャップ、知覚主観性、ラベルノイズと欠如という3つの主要な課題に関して、最先端の手法に焦点を当てる。
画像の内容やコンテキスト理解,グループ感情クラスタリング,ビューアーとイメージのインタラクションなど,今後の課題や研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-06-30T15:20:56Z) - Audio-Driven Emotional Video Portraits [79.95687903497354]
Emotional Video Portraits(EVP)は、オーディオによって駆動される鮮やかな感情的なダイナミクスで高品質のビデオポートレートを合成するシステムです。
具体的には,音声を2つの分離空間に分解するクロスリコンストラクテッド感情不等角化手法を提案する。
ゆがんだ特徴によって、動的2D感情的な顔のランドマークは推定することができます。
次に,最終的な高品質映像画像を生成するために,ターゲット適応型顔合成手法を提案する。
論文 参考訳(メタデータ) (2021-04-15T13:37:13Z) - Affect2MM: Affective Analysis of Multimedia Content Using Emotion
Causality [84.69595956853908]
本稿では,マルチメディアコンテンツを対象とした時系列感情予測学習手法であるAffect2MMを提案する。
私たちの目標は、現実の人間中心の状況や行動でキャラクターが描く様々な感情を自動的に捉えることです。
論文 参考訳(メタデータ) (2021-03-11T09:07:25Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
本稿では、上記の問題に対処するため、感情を埋め込んだモダリティ変換可能なモデルを提案する。
我々のモデルは感情カテゴリーのほとんどで最先端のパフォーマンスを達成する。
私たちのモデルは、目に見えない感情に対するゼロショットと少数ショットのシナリオにおいて、既存のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-09-21T06:10:39Z) - Context Based Emotion Recognition using EMOTIC Dataset [22.631542327834595]
EMOTIC(エモティック)は, 感情に注意を喚起された人々のイメージのデータセットである。
EMOTICデータセットを使用して、感情認識のためのさまざまなCNNモデルをトレーニングする。
その結果,情緒状態を自動的に認識するためにシーンコンテキストが重要な情報を提供することを示す。
論文 参考訳(メタデータ) (2020-03-30T12:38:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。