論文の概要: PolyPose: Localizing Deformable Anatomy in 3D from Sparse 2D X-ray Images using Polyrigid Transforms
- arxiv url: http://arxiv.org/abs/2505.19256v2
- Date: Wed, 28 May 2025 21:02:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 13:10:25.723171
- Title: PolyPose: Localizing Deformable Anatomy in 3D from Sparse 2D X-ray Images using Polyrigid Transforms
- Title(参考訳): ポリポース:ポリリグイド変換を用いたスパース2次元X線画像からの3次元変形性解剖
- Authors: Vivek Gopalakrishnan, Neel Dey, Polina Golland,
- Abstract要約: 変形可能な2D/3D登録のためのシンプルでロバストな方法であるPolyPoseを提案する。
PolyPoseは複雑な3次元変形場を剛体変換の合成としてパラメータ化する。
この強い誘導バイアスにより,PolyPoseは患者の術前容積を2枚までのX線画像に合わせることができた。
- 参考スコア(独自算出の注目度): 5.617649111108429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Determining the 3D pose of a patient from a limited set of 2D X-ray images is a critical task in interventional settings. While preoperative volumetric imaging (e.g., CT and MRI) provides precise 3D localization and visualization of anatomical targets, these modalities cannot be acquired during procedures, where fast 2D imaging (X-ray) is used instead. To integrate volumetric guidance into intraoperative procedures, we present PolyPose, a simple and robust method for deformable 2D/3D registration. PolyPose parameterizes complex 3D deformation fields as a composition of rigid transforms, leveraging the biological constraint that individual bones do not bend in typical motion. Unlike existing methods that either assume no inter-joint movement or fail outright in this under-determined setting, our polyrigid formulation enforces anatomically plausible priors that respect the piecewise rigid nature of human movement. This approach eliminates the need for expensive deformation regularizers that require patient- and procedure-specific hyperparameter optimization. Across extensive experiments on diverse datasets from orthopedic surgery and radiotherapy, we show that this strong inductive bias enables PolyPose to successfully align the patient's preoperative volume to as few as two X-ray images, thereby providing crucial 3D guidance in challenging sparse-view and limited-angle settings where current registration methods fail.
- Abstract(参考訳): 2次元X線画像の限られたセットから患者の3Dポーズを決定することは、介入設定において重要な課題である。
術前の体積像(例えば、CT、MRI)は解剖学的対象の正確な3次元局在と可視化を提供するが、これらのモダリティは、高速な2次元イメージング(X線)を代わりに使用する手順では取得できない。
術中手順にボリュームガイダンスを統合するために,変形性2D/3Dレジストレーションの簡易かつ堅牢な方法であるPolyPoseを提案する。
ポリポースは複雑な3次元変形場を剛体変換の合成としてパラメータ化し、個々の骨が典型的な動きでは曲がらないという生物学的制約を利用する。
関節間運動を前提としない既存の手法と異なり、我々のポリリグイドの定式化は、人間の運動の断片的に厳密な性質を尊重する解剖学的に妥当な先入観を強制する。
このアプローチは、患者や手順固有のハイパーパラメーター最適化を必要とする高価な変形正規化器を必要としない。
整形外科と放射線治療の多様なデータセットに関する広範な実験により、この強力な誘導バイアスにより、PolyPoseは患者の術前容積を2つのX線画像に合わせることができ、現在の登録方法が失敗するスパースビューとリミテッドアングル設定に挑戦する上で重要な3Dガイダンスを提供する。
関連論文リスト
- Generative Enhancement for 3D Medical Images [74.17066529847546]
本稿では,3次元医用画像合成の新しい生成手法であるGEM-3Dを提案する。
本手法は2次元スライスから始まり,3次元スライスマスクを用いて患者に提供するための情報スライスとして機能し,生成過程を伝搬する。
3D医療画像をマスクと患者の事前情報に分解することで、GEM-3Dは多目的な3D画像を生成する柔軟な、かつ効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-03-19T15:57:04Z) - Intraoperative 2D/3D Image Registration via Differentiable X-ray Rendering [5.617649111108429]
DiffPoseは、患者固有のシミュレーションと微分可能な物理ベースのレンダリングを利用して、手動でラベル付けされたデータに頼ることなく正確な2D/3D登録を実現する自己教師型アプローチである。
DiffPoseは手術用データセット全体の術速でサブミリ精度を達成し、既存の教師なしの手法を桁違いに改善し、教師付きベースラインよりも優れています。
論文 参考訳(メタデータ) (2023-12-11T13:05:54Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
甲状腺疾患は高分解能超音波(US)で診断されることが多い
縦断追跡は病理甲状腺形態の変化をモニタリングするための重要な診断プロトコルである。
3次元形状表現におけるUS画像の自動スライスローカライズのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-01T10:10:46Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - CNN-based real-time 2D-3D deformable registration from a single X-ray
projection [2.1198879079315573]
本稿では, フルオロスコープ画像を用いたリアルタイム2D-3D非剛体登録法を提案する。
術前スキャンから解剖学の変位場と2次元投影からなるデータセットを生成する。
ニューラルネットワークは、未知の3D変位場を単一の投影画像から回復するように訓練される。
論文 参考訳(メタデータ) (2022-12-15T09:57:19Z) - The entire network structure of Crossmodal Transformer [4.605531191013731]
提案手法はまず2次元X線と3次元CT画像から骨格の特徴を深く学習する。
その結果、よく訓練されたネットワークは任意の2D X線と3D CT間の空間的対応を直接予測することができる。
論文 参考訳(メタデータ) (2021-04-29T11:47:31Z) - Deep Learning compatible Differentiable X-ray Projections for Inverse
Rendering [8.926091372824942]
距離マップを生成するために、メッシュ内部の線状構造によって移動される距離を導出して微分可能とする。
骨盤の実際の2次元蛍光画像から3次元モデルを再構成する逆問題(逆問題)を解くことにより,その応用を示す。
論文 参考訳(メタデータ) (2021-02-04T22:06:05Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
光音響トモグラフィ(PAT)は、形態学的および機能的組織特性の両方を解決することができる新しいイメージング技術である。
現在の欠点は、従来の2Dプローブによって提供される視野の制限である。
本研究では,外部追跡システムを必要としないPATデータの3次元再構成手法を提案する。
論文 参考訳(メタデータ) (2020-11-10T09:27:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。