KGLM: Integrating Knowledge Graph Structure in Language Models for Link
Prediction
- URL: http://arxiv.org/abs/2211.02744v2
- Date: Wed, 17 May 2023 16:34:49 GMT
- Title: KGLM: Integrating Knowledge Graph Structure in Language Models for Link
Prediction
- Authors: Jason Youn and Ilias Tagkopoulos
- Abstract summary: We introduce a new entity/relation embedding layer that learns to differentiate distinctive entity and relation types.
We show that further pre-training the language models with this additional embedding layer using the triples extracted from the knowledge graph, followed by the standard fine-tuning phase sets a new state-of-the-art performance for the link prediction task on the benchmark datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability of knowledge graphs to represent complex relationships at scale
has led to their adoption for various needs including knowledge representation,
question-answering, and recommendation systems. Knowledge graphs are often
incomplete in the information they represent, necessitating the need for
knowledge graph completion tasks. Pre-trained and fine-tuned language models
have shown promise in these tasks although these models ignore the intrinsic
information encoded in the knowledge graph, namely the entity and relation
types. In this work, we propose the Knowledge Graph Language Model (KGLM)
architecture, where we introduce a new entity/relation embedding layer that
learns to differentiate distinctive entity and relation types, therefore
allowing the model to learn the structure of the knowledge graph. In this work,
we show that further pre-training the language models with this additional
embedding layer using the triples extracted from the knowledge graph, followed
by the standard fine-tuning phase sets a new state-of-the-art performance for
the link prediction task on the benchmark datasets.
Related papers
- GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding [39.67113788660731]
We introduce a framework for developing Graph-aligned LAnguage Models (GLaM)
We demonstrate that grounding the models in specific graph-based knowledge expands the models' capacity for structure-based reasoning.
arXiv Detail & Related papers (2024-02-09T19:53:29Z) - Exploring In-Context Learning Capabilities of Foundation Models for
Generating Knowledge Graphs from Text [3.114960935006655]
This paper aims to improve the state of the art of automatic construction and completion of knowledge graphs from text.
In this context, one emerging paradigm is in-context learning where a language model is used as it is with a prompt.
arXiv Detail & Related papers (2023-05-15T17:10:19Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
We propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP) for data-efficient knowledge graph construction.
RAP can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample.
arXiv Detail & Related papers (2022-10-19T16:40:28Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - JAKET: Joint Pre-training of Knowledge Graph and Language Understanding [73.43768772121985]
We propose a novel joint pre-training framework, JAKET, to model both the knowledge graph and language.
The knowledge module and language module provide essential information to mutually assist each other.
Our design enables the pre-trained model to easily adapt to unseen knowledge graphs in new domains.
arXiv Detail & Related papers (2020-10-02T05:53:36Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
We consider a novel formulation, zero-shot learning, to free this cumbersome curation.
For newly-added relations, we attempt to learn their semantic features from their text descriptions.
We leverage Generative Adrial Networks (GANs) to establish the connection between text and knowledge graph domain.
arXiv Detail & Related papers (2020-01-08T01:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.