Communication-Efficient Multi-Device Inference Acceleration for Transformer Models
- URL: http://arxiv.org/abs/2505.19342v1
- Date: Sun, 25 May 2025 22:16:59 GMT
- Title: Communication-Efficient Multi-Device Inference Acceleration for Transformer Models
- Authors: Xiao Liu, Lijun Zhang, Deepak Ganesan, Hui Guan,
- Abstract summary: Transformer models power many AI applications but suffer from high inference latency, limiting their use in real-time settings.<n>We propose ASTRA, a communication-efficient framework that accelerates Transformer inference through a novel integration of sequence parallelism and a Mixed-Precision Attention mechanism designed to minimize inter-device communication.<n>ASTRA achieves up to 2.64X speedups over single-device inference and up to 15.25X speedups over state-of-the-art multi-device inferences, while operating under bandwidths as low as 10 Mbps.
- Score: 19.938589623698338
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer models power many AI applications but suffer from high inference latency, limiting their use in real-time settings. Multi-device inference can reduce latency by parallelizing computation. Yet, existing methods require high inter-device bandwidth, making them impractical for bandwidth-constrained environments. We propose ASTRA, a communication-efficient framework that accelerates Transformer inference through a novel integration of sequence parallelism and a Mixed-Precision Attention mechanism designed to minimize inter-device communication. ASTRA compresses non-local token embeddings via vector quantization and preserves task accuracy through two optimizations, Noise-Augmented Quantization and Distributed Class Tokens. Experiments on ViT and GPT2 across vision and NLP tasks show that ASTRA achieves up to 2.64X speedups over single-device inference and up to 15.25X speedups over state-of-the-art multi-device inferences, while operating under bandwidths as low as 10 Mbps. ASTRA is open-sourced at https://github.com/xl1990/Astra.
Related papers
- Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks.<n>Most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance.<n>We propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme.
arXiv Detail & Related papers (2025-01-20T04:26:21Z) - Communication Compression for Tensor Parallel LLM Inference [1.199955563466263]
Large Language Models (LLMs) have pushed the frontier of artificial intelligence but are comprised of hundreds of billions of parameters and operations.
For faster inference latency, LLMs are deployed on multiple hardware accelerators through various Model Parallelism strategies.
Our paper looks into the details on one such strategy - Parallel - and proposes to reduce latency by compressing inter-accelerator communication.
arXiv Detail & Related papers (2024-11-14T15:19:01Z) - PipeInfer: Accelerating LLM Inference using Asynchronous Pipelined Speculation [9.080650575731152]
PipeInfer is a pipelined speculative acceleration technique to reduce inter-token latency and improve system utilization for single-request scenarios.
PipeInfer exhibits up to a 2.15$times$ improvement in generation speed over standard speculative inference.
arXiv Detail & Related papers (2024-07-16T14:52:02Z) - Efficient Asynchronous Federated Learning with Sparsification and
Quantization [55.6801207905772]
Federated Learning (FL) is attracting more and more attention to collaboratively train a machine learning model without transferring raw data.
FL generally exploits a parameter server and a large number of edge devices during the whole process of the model training.
We propose TEASQ-Fed to exploit edge devices to asynchronously participate in the training process by actively applying for tasks.
arXiv Detail & Related papers (2023-12-23T07:47:07Z) - AccEPT: An Acceleration Scheme for Speeding Up Edge Pipeline-parallel
Training [22.107070114339038]
We propose AccEPT, an acceleration scheme for accelerating the edge collaborative pipeline-parallel training.
In particular, we propose a light-weight adaptive latency predictor to accurately estimate the latency of each layer at different devices.
Our numerical results demonstrate that our proposed acceleration approach is able to significantly speed up edge pipeline parallel training up to 3 times faster.
arXiv Detail & Related papers (2023-11-10T02:18:33Z) - Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture
with Task-level Sparsity via Mixture-of-Experts [60.1586169973792]
M$3$ViT is the latest multi-task ViT model that introduces mixture-of-experts (MoE)
MoE achieves better accuracy and over 80% reduction computation but leaves challenges for efficient deployment on FPGA.
Our work, dubbed Edge-MoE, solves the challenges to introduce the first end-to-end FPGA accelerator for multi-task ViT with a collection of architectural innovations.
arXiv Detail & Related papers (2023-05-30T02:24:03Z) - An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse
Transformers [11.811907838840712]
We propose an algorithm-hardware co-optimized framework to flexibly and efficiently accelerate Transformers by utilizing general N:M sparsity patterns.
We present a flexible and efficient hardware architecture, namely STA, to achieve significant speedup when deploying N:M sparse Transformers.
Experimental results show that compared to other methods, N:M sparse Transformers, generated using IDP, achieves an average of 6.7% improvement on accuracy with high training efficiency.
arXiv Detail & Related papers (2022-08-12T04:51:49Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity.
One of the main challenges comes from the real-time implementation of these algorithms.
This paper explores the acceleration of APSM-based algorithms through massive parallelization.
arXiv Detail & Related papers (2022-01-13T15:20:45Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference [82.1584439276834]
Transformer-based language models such as BERT provide significant accuracy improvement for a multitude of natural language processing (NLP) tasks.
We present EdgeBERT, an in-depth algorithm- hardware co-design for latency-aware energy optimization for multi-task NLP.
arXiv Detail & Related papers (2020-11-28T19:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.