FlashMD: long-stride, universal prediction of molecular dynamics
- URL: http://arxiv.org/abs/2505.19350v1
- Date: Sun, 25 May 2025 22:34:31 GMT
- Title: FlashMD: long-stride, universal prediction of molecular dynamics
- Authors: Filippo Bigi, Sanggyu Chong, Agustinus Kristiadi, Michele Ceriotti,
- Abstract summary: We propose FlashMD, a method to predict the evolution of positions and momenta over strides that are between one and two orders of magnitude longer than typical MD time steps.<n>We validate FlashMD's accuracy in reproducing equilibrium and time-dependent properties, using both system-specific and general-purpose models.
- Score: 4.10341947149624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular dynamics (MD) provides insights into atomic-scale processes by integrating over time the equations that describe the motion of atoms under the action of interatomic forces. Machine learning models have substantially accelerated MD by providing inexpensive predictions of the forces, but they remain constrained to minuscule time integration steps, which are required by the fast time scale of atomic motion. In this work, we propose FlashMD, a method to predict the evolution of positions and momenta over strides that are between one and two orders of magnitude longer than typical MD time steps. We incorporate considerations on the mathematical and physical properties of Hamiltonian dynamics in the architecture, generalize the approach to allow the simulation of any thermodynamic ensemble, and carefully assess the possible failure modes of such a long-stride MD approach. We validate FlashMD's accuracy in reproducing equilibrium and time-dependent properties, using both system-specific and general-purpose models, extending the ability of MD simulation to reach the long time scales needed to model microscopic processes of high scientific and technological relevance.
Related papers
- BoostMD: Accelerating molecular sampling by leveraging ML force field features from previous time-steps [3.8214695776749013]
BoostMD is a surrogate model architecture designed to accelerate molecular dynamics simulations.<n>Our experiments demonstrate that BoostMD achieves an eight-fold speedup compared to the reference model.<n>By combining efficient feature reuse with a streamlined architecture, BoostMD offers a robust solution for conducting large-scale, long-timescale molecular simulations.
arXiv Detail & Related papers (2024-12-21T20:52:36Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.<n>We train the model using maximum likelihood estimation with Markov chain Monte Carlo.<n> Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides [17.559471937824767]
We propose a conditional generative model called Force-guided Bridge Matching (FBM)<n>FBM learns full-atom time-coarsened dynamics and targets the Boltzmann-constrained distribution.<n> Experiments on two datasets consisting of peptides verify our superiority in terms of comprehensive metrics.
arXiv Detail & Related papers (2024-08-27T15:07:27Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates
for Molecular Dynamics [8.35780131268962]
We present Implict Transfer Operator (ITO) Learning, a framework to learn surrogates of the simulation process with multiple time-resolutions.
We also present a coarse-grained CG-SE3-ITO model which can quantitatively model all-atom molecular dynamics.
arXiv Detail & Related papers (2023-05-29T12:19:41Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Timewarp: Transferable Acceleration of Molecular Dynamics by Learning
Time-Coarsened Dynamics [24.13304926093212]
We present Timewarp, an enhanced sampling method which uses a normalising flow as a proposal distribution in a Markov chain Monte Carlo method.
The flow is trained offline on MD trajectories and learns to make large steps in time, simulating the molecular dynamics of $105 - 106:textrmfs$.
arXiv Detail & Related papers (2023-02-02T15:48:39Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - A Score-based Geometric Model for Molecular Dynamics Simulations [33.158796937777886]
We propose a novel model called ScoreMD to estimate the gradient of the log density of molecular conformations.
With multiple architectural improvements, we outperforms state-of-the-art baselines on MD17 and isomers of C7O2H10.
This research provides new insights into the acceleration of new material and drug discovery.
arXiv Detail & Related papers (2022-04-19T05:13:46Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Molecular Latent Space Simulators [8.274472944075713]
We propose latent space simulators (LSS) to learn kinetic models for continuous all-atom simulation trajectories.
We demonstrate the approach in an application to Trp-protein to produce novel ultra-long synthetic folding trajectories.
arXiv Detail & Related papers (2020-07-01T20:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.