Conditional Generative Models for Simulation of EMG During Naturalistic
Movements
- URL: http://arxiv.org/abs/2211.01856v4
- Date: Thu, 5 Oct 2023 17:26:48 GMT
- Title: Conditional Generative Models for Simulation of EMG During Naturalistic
Movements
- Authors: Shihan Ma, Alexander Kenneth Clarke, Kostiantyn Maksymenko, Samuel
Deslauriers-Gauthier, Xinjun Sheng, Xiangyang Zhu, Dario Farina
- Abstract summary: We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
- Score: 45.698312905115955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerical models of electromyographic (EMG) signals have provided a huge
contribution to our fundamental understanding of human neurophysiology and
remain a central pillar of motor neuroscience and the development of
human-machine interfaces. However, whilst modern biophysical simulations based
on finite element methods are highly accurate, they are extremely
computationally expensive and thus are generally limited to modelling static
systems such as isometrically contracting limbs. As a solution to this problem,
we propose a transfer learning approach, in which a conditional generative
model is trained to mimic the output of an advanced numerical model. To this
end, we present BioMime, a conditional generative neural network trained
adversarially to generate motor unit activation potential waveforms under a
wide variety of volume conductor parameters. We demonstrate the ability of such
a model to predictively interpolate between a much smaller number of numerical
model's outputs with a high accuracy. Consequently, the computational load is
dramatically reduced, which allows the rapid simulation of EMG signals during
truly dynamic and naturalistic movements.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Event-Based Simulation of Stochastic Memristive Devices for Neuromorphic Computing [41.66366715982197]
We build a general model of memristors suitable for the simulation of event-based systems.
We extend an existing general model of memristors to an event-driven setting.
We demonstrate an approach for fitting the parameters of the event-based model to the drift model.
arXiv Detail & Related papers (2024-06-14T13:17:19Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
Neural abstractions have been recently introduced as formal approximations of complex, nonlinear dynamical models.
We employ formal inductive synthesis procedures to generate neural abstractions that result in dynamical models with these semantics.
arXiv Detail & Related papers (2023-07-28T13:22:32Z) - A Physics-Informed Low-Shot Learning For sEMG-Based Estimation of Muscle
Force and Joint Kinematics [4.878073267556235]
Muscle force and joint kinematics estimation from surface electromyography (sEMG) are essential for real-time biomechanical analysis.
Recent advances in deep neural networks (DNNs) have shown the potential to improve biomechanical analysis in a fully automated and reproducible manner.
This paper presents a novel physics-informed low-shot learning method for sEMG-based estimation of muscle force and joint kinematics.
arXiv Detail & Related papers (2023-07-08T23:01:12Z) - Machine learning for phase ordering dynamics of charge density waves [5.813015022439543]
We present a machine learning framework for large-scale dynamical simulations of charge density wave (CDW) states.
A neural-network model is developed to accurately and efficiently predict local electronic forces with input from neighborhood configurations.
Our work highlights the promising potential of ML-based force-field models for dynamical simulations of functional electronic materials.
arXiv Detail & Related papers (2023-03-06T21:00:56Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Neural ODE and DAE Modules for Power System Dynamic Modeling [2.342020413587919]
In practical power systems, dynamic component modeling has long faced the challenges of model determination and model calibration.
In this paper, based on the general framework of neural ordinary differential equations (ODEs), a modified neural ODE module and a neural differential-algebraic equations (DAEs) module for power system dynamic component modeling are proposed.
The modules adopt an autoencoder to raise the dimension of state variables, model the dynamics of components with artificial neural networks (ANNs) and keep the numerical integration structure.
arXiv Detail & Related papers (2021-10-25T14:15:45Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Prediction with Approximated Gaussian Process Dynamical Models [7.678864239473703]
We present approximated GPDMs which are Markov and analyze their control theoretical properties.
The outcomes are illustrated with numerical examples that show the power of the approximated models.
arXiv Detail & Related papers (2020-06-25T16:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.