論文の概要: Beyond Editing Pairs: Fine-Grained Instructional Image Editing via Multi-Scale Learnable Regions
- arxiv url: http://arxiv.org/abs/2505.19352v1
- Date: Sun, 25 May 2025 22:40:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.066571
- Title: Beyond Editing Pairs: Fine-Grained Instructional Image Editing via Multi-Scale Learnable Regions
- Title(参考訳): ペアの編集を超えて:マルチスケールの学習可能な領域を経由した細粒のインストラクショナルイメージ編集
- Authors: Chenrui Ma, Xi Xiao, Tianyang Wang, Yanning Shen,
- Abstract要約: 我々は、広く利用可能な膨大なテキストイメージ対を利用する命令駆動画像編集のための新しいパラダイムを開発する。
本手法では,編集プロセスのローカライズとガイドを行うために,マルチスケールの学習可能な領域を導入する。
画像とそのテキスト記述のアライメントを監督・学習として扱い,タスク固有の編集領域を生成することにより,高忠実で高精度かつ命令一貫性のある画像編集を実現する。
- 参考スコア(独自算出の注目度): 20.617718631292696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current text-driven image editing methods typically follow one of two directions: relying on large-scale, high-quality editing pair datasets to improve editing precision and diversity, or exploring alternative dataset-free techniques. However, constructing large-scale editing datasets requires carefully designed pipelines, is time-consuming, and often results in unrealistic samples or unwanted artifacts. Meanwhile, dataset-free methods may suffer from limited instruction comprehension and restricted editing capabilities. Faced with these challenges, the present work develops a novel paradigm for instruction-driven image editing that leverages widely available and enormous text-image pairs, instead of relying on editing pair datasets. Our approach introduces a multi-scale learnable region to localize and guide the editing process. By treating the alignment between images and their textual descriptions as supervision and learning to generate task-specific editing regions, our method achieves high-fidelity, precise, and instruction-consistent image editing. Extensive experiments demonstrate that the proposed approach attains state-of-the-art performance across various tasks and benchmarks, while exhibiting strong adaptability to various types of generative models.
- Abstract(参考訳): 現在のテキスト駆動画像編集法は、一般的に2つの方向のいずれかに従う: 編集精度と多様性を改善するために、大規模で高品質な編集ペアデータセットを頼りにするか、代替のデータセットフリー技術を模索する。
しかし、大規模な編集データセットを構築するには、慎重に設計されたパイプラインが必要で、時間がかかり、しばしば非現実的なサンプルや不要なアーティファクトが生成される。
一方、データセットなしのメソッドは、限られた命令理解と制限された編集機能に悩まされる可能性がある。
これらの課題に直面して、本研究では、ペアデータセットの編集に頼るのではなく、広く利用可能な巨大なテキストイメージペアを活用する、命令駆動画像編集のための新しいパラダイムを開発する。
本手法では,編集プロセスのローカライズとガイドを行うために,マルチスケールの学習可能な領域を導入する。
画像とそのテキスト記述のアライメントを監督・学習として扱い,タスク固有の編集領域を生成することにより,高忠実,高精度,かつ命令一貫性のある画像編集を実現する。
大規模な実験により、提案手法は様々なタスクやベンチマークにまたがって最先端の性能を実現するとともに、様々な生成モデルに強い適応性を示すことを示した。
関連論文リスト
- AnyEdit: Mastering Unified High-Quality Image Editing for Any Idea [88.79769371584491]
我々は、総合的なマルチモーダル命令編集データセットであるAnyEditを提示する。
我々は,AnyEditコレクションの多様性と品質を,初期データ多様性,適応編集プロセス,自動編集結果の選択という3つの側面を通じて保証する。
3つのベンチマークデータセットの実験によると、AnyEditは拡散ベースの編集モデルのパフォーマンスを一貫して向上させる。
論文 参考訳(メタデータ) (2024-11-24T07:02:56Z) - A Survey of Multimodal-Guided Image Editing with Text-to-Image Diffusion Models [117.77807994397784]
画像編集は、ユーザーが特定の要求を満たすために、与えられた合成画像または実際の画像を編集することを目的としている。
この分野での最近の顕著な進歩は、テキスト・ツー・イメージ(T2I)拡散モデルの開発に基づいている。
T2Iベースの画像編集手法は、編集性能を大幅に向上させ、マルチモーダル入力でガイドされたコンテンツを修正するためのユーザフレンドリーなインタフェースを提供する。
論文 参考訳(メタデータ) (2024-06-20T17:58:52Z) - Unified Diffusion-Based Rigid and Non-Rigid Editing with Text and Image
Guidance [15.130419159003816]
本稿では,厳密な編集と非厳密な編集の両方を実行できる多用途画像編集フレームワークを提案する。
我々は、多種多様な編集シナリオを扱うために、デュアルパスインジェクション方式を利用する。
外観と構造情報の融合のための統合自己認識機構を導入する。
論文 参考訳(メタデータ) (2024-01-04T08:21:30Z) - Optimisation-Based Multi-Modal Semantic Image Editing [58.496064583110694]
本稿では,複数の編集命令型に対応するために,推論時編集の最適化を提案する。
各損失関数の影響を調整することで、ユーザの好みに合わせてフレキシブルな編集ソリューションを構築することができる。
本手法は,テキスト,ポーズ,スクリブルといった編集条件を用いて評価し,複雑な編集を行う能力を強調した。
論文 参考訳(メタデータ) (2023-11-28T15:31:11Z) - Emu Edit: Precise Image Editing via Recognition and Generation Tasks [62.95717180730946]
本稿では,マルチタスク画像編集モデルであるEmu Editについて述べる。
我々は、地域ベースの編集、自由形式の編集、コンピュータビジョンタスクなど、前例のない範囲でマルチタスクに訓練する。
Emu Editは画像インペイント、超解像、編集タスクの構成といった新しいタスクに、ラベル付き例で一般化できることを示す。
論文 参考訳(メタデータ) (2023-11-16T18:55:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。