DiffVLA: Vision-Language Guided Diffusion Planning for Autonomous Driving
- URL: http://arxiv.org/abs/2505.19381v4
- Date: Tue, 03 Jun 2025 02:28:31 GMT
- Title: DiffVLA: Vision-Language Guided Diffusion Planning for Autonomous Driving
- Authors: Anqing Jiang, Yu Gao, Zhigang Sun, Yiru Wang, Jijun Wang, Jinghao Chai, Qian Cao, Yuweng Heng, Hao Jiang, Yunda Dong, Zongzheng Zhang, Xianda Guo, Hao Sun, Hao Zhao,
- Abstract summary: We propose a novel hybrid sparse-dense diffusion policy, empowered by a Vision-Language Model (VLM)<n>Our method shows superior performance in Autonomous Grand Challenge 2025 which contains challenging real and reactive synthetic scenarios.
- Score: 15.457670964093156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research interest in end-to-end autonomous driving has surged owing to its fully differentiable design integrating modular tasks, i.e. perception, prediction and planing, which enables optimization in pursuit of the ultimate goal. Despite the great potential of the end-to-end paradigm, existing methods suffer from several aspects including expensive BEV (bird's eye view) computation, action diversity, and sub-optimal decision in complex real-world scenarios. To address these challenges, we propose a novel hybrid sparse-dense diffusion policy, empowered by a Vision-Language Model (VLM), called Diff-VLA. We explore the sparse diffusion representation for efficient multi-modal driving behavior. Moreover, we rethink the effectiveness of VLM driving decision and improve the trajectory generation guidance through deep interaction across agent, map instances and VLM output. Our method shows superior performance in Autonomous Grand Challenge 2025 which contains challenging real and reactive synthetic scenarios. Our methods achieves 45.0 PDMS.
Related papers
- VLMPlanner: Integrating Visual Language Models with Motion Planning [18.633637485218802]
VLMPlanner is a hybrid framework that combines a learning-based real-time planner with a vision-language model (VLM) capable of reasoning over raw images.<n>We develop the Context-Adaptive Inference Gate mechanism that enables the VLM to mimic human driving behavior.
arXiv Detail & Related papers (2025-07-27T16:15:21Z) - AutoVLA: A Vision-Language-Action Model for End-to-End Autonomous Driving with Adaptive Reasoning and Reinforcement Fine-Tuning [42.409352964719204]
Vision-Language-Action (VLA) models have shown promise for end-to-end autonomous driving.<n>Current VLA models struggle with physically infeasible action outputs, complex model structures, or unnecessarily long reasoning.<n>We propose AutoVLA, a novel VLA model that unifies reasoning and action generation within a single autoregressive generation model.
arXiv Detail & Related papers (2025-06-16T17:58:50Z) - ReCogDrive: A Reinforced Cognitive Framework for End-to-End Autonomous Driving [35.493857028919685]
We propose ReCogDrive, an autonomous driving system that integrates Vision-Language Models with diffusion planner.<n>In this paper, we use a large-scale driving question-answering datasets to train the VLMs, mitigating the domain discrepancy between generic content and real-world driving scenarios.<n>In the second stage, we employ a diffusion-based planner to perform imitation learning, mapping representations from the latent language space to continuous driving actions.
arXiv Detail & Related papers (2025-06-09T03:14:04Z) - SOLVE: Synergy of Language-Vision and End-to-End Networks for Autonomous Driving [51.47621083057114]
SOLVE is an innovative framework that synergizes Vision-Language Models with end-to-end (E2E) models to enhance autonomous vehicle planning.<n>Our approach emphasizes knowledge sharing at the feature level through a shared visual encoder, enabling comprehensive interaction between VLM and E2E components.
arXiv Detail & Related papers (2025-05-22T15:44:30Z) - RAD: Retrieval-Augmented Decision-Making of Meta-Actions with Vision-Language Models in Autonomous Driving [10.984203470464687]
Vision-language models (VLMs) often suffer from limitations such as inadequate spatial perception and hallucination.<n>We propose a retrieval-augmented decision-making (RAD) framework to enhance VLMs' capabilities to reliably generate meta-actions in autonomous driving scenes.<n>We fine-tune VLMs on a dataset derived from the NuScenes dataset to enhance their spatial perception and bird's-eye view image comprehension capabilities.
arXiv Detail & Related papers (2025-03-18T03:25:57Z) - DiffAD: A Unified Diffusion Modeling Approach for Autonomous Driving [17.939192289319056]
We introduce DiffAD, a novel diffusion probabilistic model that redefines autonomous driving as a conditional image generation task.<n>Byizing heterogeneous targets onto a unified bird's-eye view (BEV) and modeling their latent distribution, DiffAD unifies various driving objectives.<n>The reverse process iteratively refines the generated BEV image, resulting in more robust and realistic driving behaviors.
arXiv Detail & Related papers (2025-03-15T15:23:35Z) - The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey [50.62538723793247]
Driving World Model (DWM) focuses on predicting scene evolution during the driving process.<n>DWM methods enable autonomous driving systems to better perceive, understand, and interact with dynamic driving environments.
arXiv Detail & Related papers (2025-02-14T18:43:15Z) - Diffusion-Based Planning for Autonomous Driving with Flexible Guidance [19.204115959760788]
We propose a novel transformer-based Diffusion Planner for closed-loop planning.<n>Our model supports joint modeling of both prediction and planning tasks.<n>It achieves state-of-the-art closed-loop performance with robust transferability in diverse driving styles.
arXiv Detail & Related papers (2025-01-26T15:49:50Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.<n>World models offer high-fidelity representations of the driving environment that integrate multi-sensor data, semantic cues, and temporal dynamics.<n>This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - VLM-AD: End-to-End Autonomous Driving through Vision-Language Model Supervision [20.43366384946928]
Vision-language models (VLMs) as teachers to enhance training.<n>VLM-AD achieves significant improvements in planning accuracy and reduced collision rates on the nuScenes dataset.
arXiv Detail & Related papers (2024-12-19T01:53:36Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.<n>Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.<n>Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
We look at the application of Multimodal Large Language Models (MLLMs) in autonomous driving.
Despite advances in models like GPT-4o, their performance in complex driving environments remains largely unexplored.
arXiv Detail & Related papers (2024-05-09T17:52:42Z) - Parameterized Decision-making with Multi-modal Perception for Autonomous
Driving [12.21578713219778]
We propose a parameterized decision-making framework with multi-modal perception based on deep reinforcement learning, called AUTO.
A hybrid reward function takes into account aspects of safety, traffic efficiency, passenger comfort, and impact to guide the framework to generate optimal actions.
arXiv Detail & Related papers (2023-12-19T08:27:02Z) - Drive Anywhere: Generalizable End-to-end Autonomous Driving with
Multi-modal Foundation Models [114.69732301904419]
We present an approach to apply end-to-end open-set (any environment/scene) autonomous driving that is capable of providing driving decisions from representations queryable by image and text.
Our approach demonstrates unparalleled results in diverse tests while achieving significantly greater robustness in out-of-distribution situations.
arXiv Detail & Related papers (2023-10-26T17:56:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.