Simple and Effective Baselines for Code Summarisation Evaluation
- URL: http://arxiv.org/abs/2505.19392v1
- Date: Mon, 26 May 2025 01:16:41 GMT
- Title: Simple and Effective Baselines for Code Summarisation Evaluation
- Authors: Jade Robinson, Jonathan K. Kummerfeld,
- Abstract summary: We introduce a simple new baseline in which we ask an LLM to give an overall score to a summary.<n>Unlike n-gram and embedding-based baselines, our approach is able to consider the code when giving a score.
- Score: 12.640225615568749
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code documentation is useful, but writing it is time-consuming. Different techniques for generating code summaries have emerged, but comparing them is difficult because human evaluation is expensive and automatic metrics are unreliable. In this paper, we introduce a simple new baseline in which we ask an LLM to give an overall score to a summary. Unlike n-gram and embedding-based baselines, our approach is able to consider the code when giving a score. This allows us to also make a variant that does not consider the reference summary at all, which could be used for other tasks, e.g., to evaluate the quality of documentation in code bases. We find that our method is as good or better than prior metrics, though we recommend using it in conjunction with embedding-based methods to avoid the risk of LLM-specific bias.
Related papers
- On the Effectiveness of LLM-as-a-judge for Code Generation and Summarization [54.965787768076254]
Large Language Models have been recently exploited as judges for complex natural language processing tasks, such as Q&A.<n>We study the effectiveness of LLMs-as-a-judge for two code-related tasks, namely code generation and code summarization.
arXiv Detail & Related papers (2025-07-22T13:40:26Z) - ImpliRet: Benchmarking the Implicit Fact Retrieval Challenge [49.65993318863458]
ImpliRet is a benchmark that shifts the reasoning challenge to document-side processing.<n>We evaluate a range of sparse and dense retrievers, all of which struggle in this setting.
arXiv Detail & Related papers (2025-06-17T11:08:29Z) - Rubric Is All You Need: Enhancing LLM-based Code Evaluation With Question-Specific Rubrics [1.3707925738322797]
We propose a new metric called as Leniency, which quantifies evaluation strictness relative to expert assessment.<n>Our comprehensive analysis demonstrates that emphquestion-specific rubrics significantly enhance logical assessment of code in educational settings.
arXiv Detail & Related papers (2025-03-31T11:59:43Z) - Human-Like Code Quality Evaluation through LLM-based Recursive Semantic Comprehension [39.277408536940825]
Code quality evaluation involves scoring generated code quality based on a reference code for a specific problem statement.<n>Currently, there are two main forms of evaluating code quality: match-based evaluation and execution-based evaluation.
arXiv Detail & Related papers (2024-11-30T01:49:25Z) - DOCE: Finding the Sweet Spot for Execution-Based Code Generation [69.5305729627198]
We propose a comprehensive framework that includes candidate generation, $n$-best reranking, minimum Bayes risk (MBR) decoding, and self-ging as the core components.
Our findings highlight the importance of execution-based methods and the difference gap between execution-based and execution-free methods.
arXiv Detail & Related papers (2024-08-25T07:10:36Z) - Generating Unseen Code Tests In Infinitum [1.0674604700001968]
We present a method for creating benchmark variations that generalize across coding tasks and programming languages.
We implement one benchmark, called textitauto-regression, for the task of text-to-code generation in Python.
arXiv Detail & Related papers (2024-07-29T08:11:20Z) - FineSurE: Fine-grained Summarization Evaluation using LLMs [22.62504593575933]
FineSurE is a fine-grained evaluator specifically tailored for the summarization task using large language models (LLMs)
It also employs completeness and conciseness criteria, in addition to faithfulness, enabling multi-dimensional assessment.
arXiv Detail & Related papers (2024-07-01T02:20:28Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
Uncertainty quantification is a key element of machine learning applications.<n>We introduce a novel benchmark that implements a collection of state-of-the-art UQ baselines.<n>We conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches.
arXiv Detail & Related papers (2024-06-21T20:06:31Z) - How Reliable Are Automatic Evaluation Methods for Instruction-Tuned LLMs? [3.1706553206969925]
We perform a meta-evaluation of such methods and assess their reliability across a broad range of tasks.
We observe that while automatic evaluation methods can approximate human ratings under specific conditions, their validity is highly context-dependent.
Our findings enhance the understanding of how automatic methods should be applied and interpreted when developing and evaluating instruction-tuned LLMs.
arXiv Detail & Related papers (2024-02-16T15:48:33Z) - Not All Metrics Are Guilty: Improving NLG Evaluation by Diversifying References [123.39034752499076]
Div-Ref is a method to enhance evaluation benchmarks by enriching the number of references.
We conduct experiments to empirically demonstrate that diversifying the expression of reference can significantly enhance the correlation between automatic evaluation and human evaluation.
arXiv Detail & Related papers (2023-05-24T11:53:29Z) - Evaluating the Factual Consistency of Large Language Models Through News
Summarization [97.04685401448499]
We propose a new benchmark called FIB(Factual Inconsistency Benchmark) that focuses on the task of summarization.
For factually consistent summaries, we use human-written reference summaries that we manually verify as factually consistent.
For factually inconsistent summaries, we generate summaries from a suite of summarization models that we have manually annotated as factually inconsistent.
arXiv Detail & Related papers (2022-11-15T18:50:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.