Fusion Intelligence for Digital Twinning AI Data Centers: A Synergistic GenAI-PhyAI Approach
- URL: http://arxiv.org/abs/2505.19409v1
- Date: Mon, 26 May 2025 01:58:34 GMT
- Title: Fusion Intelligence for Digital Twinning AI Data Centers: A Synergistic GenAI-PhyAI Approach
- Authors: Ruihang Wang, Minghao Li, Zhiwei Cao, Jimin Jia, Kyle Guan, Yonggang Wen,
- Abstract summary: Fusion Intelligence is a novel framework synergizing GenAI's automation with PhyAI's domain grounding.<n>Case studies demonstrate the advantages of our framework in automating the creation and validation of AIDC digital twins.
- Score: 17.699432259756456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The explosion in artificial intelligence (AI) applications is pushing the development of AI-dedicated data centers (AIDCs), creating management challenges that traditional methods and standalone AI solutions struggle to address. While digital twins are beneficial for AI-based design validation and operational optimization, current AI methods for their creation face limitations. Specifically, physical AI (PhyAI) aims to capture the underlying physical laws, which demands extensive, case-specific customization, and generative AI (GenAI) can produce inaccurate or hallucinated results. We propose Fusion Intelligence, a novel framework synergizing GenAI's automation with PhyAI's domain grounding. In this dual-agent collaboration, GenAI interprets natural language prompts to generate tokenized AIDC digital twins. Subsequently, PhyAI optimizes these generated twins by enforcing physical constraints and assimilating real-time data. Case studies demonstrate the advantages of our framework in automating the creation and validation of AIDC digital twins. These twins deliver predictive analytics to support power usage effectiveness (PUE) optimization in the design stage. With operational data collected, the digital twin accuracy is further improved compared with pure physics-based models developed by human experts. Fusion Intelligence offers a promising pathway to accelerate digital transformation. It enables more reliable and efficient AI-driven digital transformation for a broad range of mission-critical infrastructures.
Related papers
- Generative AI for Autonomous Driving: Frontiers and Opportunities [145.6465312554513]
This survey delivers a comprehensive synthesis of the emerging role of GenAI across the autonomous driving stack.<n>We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models.<n>We categorize practical applications, such as synthetic data generalization, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI.
arXiv Detail & Related papers (2025-05-13T17:59:20Z) - Transforming Future Data Center Operations and Management via Physical AI [24.063748316223343]
Data centers as mission-critical infrastructures are pivotal in powering the growth of artificial intelligence (AI) and the digital economy.<n>The evolution from Internet DC to AI DC has introduced new challenges in operating and managing data centers for improved business resilience and reduced total cost of ownership.<n>We propose and develop a novel Physical AI (PhyAI) framework for advancing DC operations and management.
arXiv Detail & Related papers (2025-04-07T12:09:22Z) - AI Generations: From AI 1.0 to AI 4.0 [3.4440023363051266]
This paper proposes that Artificial Intelligence (AI) progresses through several overlapping generations.<n>Each of these AI generations is driven by shifting priorities among algorithms, computing power, and data.<n>It explores the profound ethical, regulatory, and philosophical challenges that arise when artificial systems approach (or aspire to) human-like autonomy.
arXiv Detail & Related papers (2025-02-16T23:19:44Z) - Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AI is a rapidly advancing field that bridges the gap between cyberspace and physical space.
In VEANET, embodied AI twins act as in-vehicle AI assistants to perform diverse tasks supporting autonomous driving.
arXiv Detail & Related papers (2024-10-02T02:20:42Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.<n>By digitizing data throughout product life cycles, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.<n>GenAI can drive the construction and update of DTs to improve predictive accuracy and prepare for diverse smart manufacturing.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - Survey and Taxonomy: The Role of Data-Centric AI in Transformer-Based Time Series Forecasting [36.31269406067809]
We argue that data-centric AI is essential for training AI models, particularly for transformer-based TSF models efficiently.
We review the previous research works from a data-centric AI perspective and we intend to lay the foundation work for the future development of transformer-based architecture and data-centric AI.
arXiv Detail & Related papers (2024-07-29T08:27:21Z) - Adaptation of XAI to Auto-tuning for Numerical Libraries [0.0]
Explainable AI (XAI) technology is gaining prominence, aiming to streamline AI model development and alleviate the burden of explaining AI outputs to users.
This research focuses on XAI for AI models when integrated into two different processes for practical numerical computations.
arXiv Detail & Related papers (2024-05-12T09:00:56Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - A Revolution of Personalized Healthcare: Enabling Human Digital Twin
with Mobile AIGC [54.74071593520785]
Mobile AIGC can be a key enabling technology for an emerging application, called human digital twin (HDT)
HDT empowered by the mobile AIGC is expected to revolutionize the personalized healthcare by generating rare disease data, modeling high-fidelity digital twin, building versatile testbeds, and providing 24/7 customized medical services.
arXiv Detail & Related papers (2023-07-22T15:59:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.