論文の概要: Self-Reflective Planning with Knowledge Graphs: Enhancing LLM Reasoning Reliability for Question Answering
- arxiv url: http://arxiv.org/abs/2505.19410v1
- Date: Mon, 26 May 2025 01:59:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.101797
- Title: Self-Reflective Planning with Knowledge Graphs: Enhancing LLM Reasoning Reliability for Question Answering
- Title(参考訳): 知識グラフを用いた自己回帰計画:質問応答に対するLLM推論の信頼性向上
- Authors: Jiajun Zhu, Ye Liu, Meikai Bao, Kai Zhang, Yanghai Zhang, Qi Liu,
- Abstract要約: 本稿では,知識グラフと大規模言語モデルを相乗化するフレームワークである自己回帰計画(SRP)を提案する。
計画プロセスにおいて、SRPはまず、ガイドプランニングとリフレクションのための参照を検索する。
推論経路を介してKGから知識を検索した後、検索結果を判断し、回答が正しく検索されるまで推論経路を編集して反復反射を行う。
- 参考スコア(独自算出の注目度): 9.601307470705732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, large language models (LLMs) have demonstrated remarkable capabilities in natural language processing tasks, yet they remain prone to hallucinations when reasoning with insufficient internal knowledge. While integrating LLMs with knowledge graphs (KGs) provides access to structured, verifiable information, existing approaches often generate incomplete or factually inconsistent reasoning paths. To this end, we propose Self-Reflective Planning (SRP), a framework that synergizes LLMs with KGs through iterative, reference-guided reasoning. Specifically, given a question and topic entities, SRP first searches for references to guide planning and reflection. In the planning process, it checks initial relations and generates a reasoning path. After retrieving knowledge from KGs through a reasoning path, it implements iterative reflection by judging the retrieval result and editing the reasoning path until the answer is correctly retrieved. Extensive experiments on three public datasets demonstrate that SRP surpasses various strong baselines and further underscore its reliable reasoning ability.
- Abstract(参考訳): 近年,大規模言語モデル (LLM) は自然言語処理タスクにおいて顕著な能力を発揮している。
LLMと知識グラフ(KG)の統合は構造化された検証可能な情報へのアクセスを提供するが、既存のアプローチは不完全あるいは現実的に一貫性のない推論パスを生成することが多い。
この目的のために我々は,反復的,参照誘導的推論を通じてLLMとKGを相乗化するフレームワークである自己回帰計画(SRP)を提案する。
具体的には、質問とトピックのエンティティが与えられた場合、SRPはまず、計画とリフレクションをガイドする参照を検索する。
計画プロセスでは、初期関係をチェックし、推論経路を生成する。
推論経路を介してKGから知識を検索した後、検索結果を判断し、回答が正しく検索されるまで推論経路を編集して反復反射を行う。
3つの公開データセットに関する大規模な実験は、SRPが様々な強力なベースラインを超え、信頼性の高い推論能力をさらに強調していることを示している。
関連論文リスト
- Prompting Large Language Models with Partial Knowledge for Answering Questions with Unseen Entities [43.88784275673178]
Retrieval-Augmented Generation (RAG) は、Large Language Models (LLMs) におけるパラメトリック知識の補足と置換によって優れた性能を示す
我々は,金の推論経路とその変種が,その答えを含む経路を除去することにより,部分的に関連する知識を構築するためにどのように使用されるかを示す。
我々の覚醒に基づくアプローチは、組み込みベースの類似性に依存する従来の手法よりも優れた実用的効果を示す。
論文 参考訳(メタデータ) (2025-08-02T09:54:46Z) - Reliable Reasoning Path: Distilling Effective Guidance for LLM Reasoning with Knowledge Graphs [14.60537408321632]
大規模言語モデル(LLM)は、背景知識の不足のため、知識集約的なタスクに苦しむことが多い。
知識グラフをマイニングするためのRCPフレームワークを提案する。
また、その意義に応じて推論経路を評価し、洗練する再考モジュールも導入する。
論文 参考訳(メタデータ) (2025-06-12T09:10:32Z) - KnowTrace: Bootstrapping Iterative Retrieval-Augmented Generation with Structured Knowledge Tracing [64.38243807002878]
我々は、大規模言語モデルにおけるコンテキスト過負荷を軽減するためのエレガントなRAGフレームワークであるKnowTraceを紹介する。
KnowTraceは、必要な知識三つ子を自律的に追跡して、入力された質問に関連する特定の知識グラフを整理する。
3つのマルチホップ質問応答ベンチマークで、既存のメソッドを一貫して上回っている。
論文 参考訳(メタデータ) (2025-05-26T17:22:20Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
既存の大規模言語モデル(LLM)は、例外的な問題解決能力を示すが、複雑な推論タスクに苦労する可能性がある。
検索情報を統合した新しいRAG手法である textbfRAG-Star を提案する。
Llama-3.1-8B-Instruct と GPT-4o を併用した実験により,RAG-Star は従来のRAG と推理法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-12-17T13:05:36Z) - FiDeLiS: Faithful Reasoning in Large Language Model for Knowledge Graph Question Answering [46.41364317172677]
大規模言語モデル(LLM)は、しばしば誤ったあるいは幻覚的な応答を生成することで挑戦される。
本稿では,知識グラフから得られた検証可能な推論ステップに回答を固定することで,LLM応答の事実性を改善するための統合フレームワークFiDeLiSを提案する。
トレーニング不要のフレームワークである本手法は,性能の向上だけでなく,異なるベンチマークにおける現実性や解釈可能性の向上にも寄与する。
論文 参考訳(メタデータ) (2024-05-22T17:56:53Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - keqing: knowledge-based question answering is a nature chain-of-thought
mentor of LLM [27.76205400533089]
大規模言語モデル(LLM)は様々な自然言語処理(NLP)タスク、特に質問応答において顕著な性能を示した。
本稿では,知識グラフ上の質問関連構造化情報を取得するために,ChatGPTなどのLLMを支援する新しいフレームワークを提案する。
KBQAデータセットの実験結果から,Keqingは競合性能を達成でき,各質問に答える論理を説明できることがわかった。
論文 参考訳(メタデータ) (2023-12-31T08:39:04Z) - Reasoning on Graphs: Faithful and Interpretable Large Language Model
Reasoning [104.92384929827776]
大規模言語モデル(LLM)は複雑なタスクにおいて顕著な推論能力を示している。
彼らは推論中に最新の知識と幻覚を欠いている。
知識グラフ(KG)は、推論のための信頼できる知識源を提供する。
論文 参考訳(メタデータ) (2023-10-02T10:14:43Z) - Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph [29.447300472617826]
Think-on-Graph (ToG)は、大規模言語モデル(LLM)における外部知識グラフ(KG)に対する新しいアプローチである。
ToGはKG上でビームサーチを繰り返し実行し、最も有望な推論経路を発見し、最も可能性の高い推論結果を返す。
ToGは、以前のSOTAが追加トレーニングに依存する9つのデータセットのうち6つで、全体的なSOTAを達成する。
論文 参考訳(メタデータ) (2023-07-15T03:31:38Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z) - Rethinking with Retrieval: Faithful Large Language Model Inference [91.66406351103484]
我々は検索(RR)で再考する新しいポストプロセッシング手法を提案する。
RRは、チェーン・オブ・シークレット・プロンプトから得られた推論ステップに基づいて、関連する外部知識を検索する。
複雑な3つの推論課題に対する GPT-3 を用いた広範囲な実験により RR の有効性を評価する。
論文 参考訳(メタデータ) (2022-12-31T22:35:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。