Advanced long-term earth system forecasting by learning the small-scale nature
- URL: http://arxiv.org/abs/2505.19432v1
- Date: Mon, 26 May 2025 02:49:00 GMT
- Title: Advanced long-term earth system forecasting by learning the small-scale nature
- Authors: Hao Wu, Yuan Gao, Ruiqi Shu, Kun Wang, Ruijian Gou, Chuhan Wu, Xinliang Liu, Juncai He, Shuhao Cao, Junfeng Fang, Xingjian Shi, Feng Tao, Qi Song, Shengxuan Ji, Yanfei Xiang, Yuze Sun, Jiahao Li, Fan Xu, Huanshuo Dong, Haixin Wang, Fan Zhang, Penghao Zhao, Xian Wu, Qingsong Wen, Deliang Chen, Xiaomeng Huang,
- Abstract summary: We present Triton, an AI framework designed to address this fundamental challenge.<n>Inspired by increasing grids to explicitly resolve small scales in numerical models, Triton employs a hierarchical architecture processing information across multiple resolutions to mitigate spectral bias.<n>We demonstrate Triton's superior performance on challenging forecast tasks, achieving stable year-long global temperature forecasts, skillful Kuroshio eddy predictions till 120 days, and high-fidelity turbulence simulations.
- Score: 74.19833913539053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliable long-term forecast of Earth system dynamics is heavily hampered by instabilities in current AI models during extended autoregressive simulations. These failures often originate from inherent spectral bias, leading to inadequate representation of critical high-frequency, small-scale processes and subsequent uncontrolled error amplification. We present Triton, an AI framework designed to address this fundamental challenge. Inspired by increasing grids to explicitly resolve small scales in numerical models, Triton employs a hierarchical architecture processing information across multiple resolutions to mitigate spectral bias and explicitly model cross-scale dynamics. We demonstrate Triton's superior performance on challenging forecast tasks, achieving stable year-long global temperature forecasts, skillful Kuroshio eddy predictions till 120 days, and high-fidelity turbulence simulations preserving fine-scale structures all without external forcing, with significantly surpassing baseline AI models in long-term stability and accuracy. By effectively suppressing high-frequency error accumulation, Triton offers a promising pathway towards trustworthy AI-driven simulation for climate and earth system science.
Related papers
- Elucidated Rolling Diffusion Models for Probabilistic Weather Forecasting [52.6508222408558]
We introduce Elucidated Rolling Diffusion Models (ERDM)<n>ERDM is the first framework to unify a rolling forecast structure with the principled, performant design of Elucidated Diffusion Models (EDM)<n>On 2D Navier-Stokes simulations and ERA5 global weather forecasting at 1.5circ resolution, ERDM consistently outperforms key diffusion-based baselines.
arXiv Detail & Related papers (2025-06-24T21:44:31Z) - Hierarchical Implicit Neural Emulators [20.09615751270837]
We introduce a multiscale implicit neural emulator that enhances long-term prediction accuracy.<n>Our approach leverages predictions several steps ahead in time at increasing compression rates for next-timestep refinements.<n> Experiments on turbulent fluid dynamics show that our method achieves high short-term accuracy and produces long-term stable forecasts.
arXiv Detail & Related papers (2025-06-05T00:28:26Z) - Generative emulation of chaotic dynamics with coherent prior [0.129182926254119]
We present an efficient generative framework for dynamics emulation, unifying principles of turbulence with diffusion-based modeling: Cohesion.<n>Specifically, our method estimates large-scale coherent structure of the underlying dynamics as guidance during the denoising process.<n>Cohesion superior long-range forecasting skill can efficiently generate physically-consistent simulations, even in the presence of partially-observed guidance.
arXiv Detail & Related papers (2025-04-19T11:14:40Z) - ORBIT: Oak Ridge Base Foundation Model for Earth System Predictability [10.88886669820126]
We introduce the Oak Ridge Base Foundation Model for Earth System Predictability (ORBIT)
ORBIT is the largest model of its kind and surpasses the current climate AI foundation model size by a thousandfold.
Performance scaling tests on the Frontier supercomputer have demonstrated that ORBIT achieves 684 petaFLOPS to 1.6 exaFLOPS sustained throughput.
arXiv Detail & Related papers (2024-04-23T03:39:57Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraos incorporates chaos theory into long-term time series forecasting.
We show that Attraos outperforms various LTSF methods on mainstream datasets and chaotic datasets with only one-twelfth of the parameters compared to PatchTST.
arXiv Detail & Related papers (2024-02-18T05:35:01Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Challenges of learning multi-scale dynamics with AI weather models: Implications for stability and one solution [0.0]
Current AI-based weather models can only provide short-term forecasts accurately when time-integrated beyond a few weeks or a few months.<n>The cause of the instabilities is unknown, and the methods that are used to improve their stability horizons are ad-hoc and lack rigorous theory.<n>We develop long-term physically-consistent data-driven models for the climate system and demonstrate accurate short-term forecasts.
arXiv Detail & Related papers (2023-04-14T09:49:11Z) - A posteriori learning of quasi-geostrophic turbulence parametrization:
an experiment on integration steps [4.212677330241214]
We show that learning a model jointly with the dynamical solver and a meaningful $textita posteriori$-based loss function lead to stable and realistic simulations.
arXiv Detail & Related papers (2021-11-12T17:59:52Z) - T$^2$-Net: A Semi-supervised Deep Model for Turbulence Forecasting [65.498967509424]
Air turbulence forecasting can help airlines avoid hazardous turbulence, guide routes that keep passengers safe, maximize efficiency, reduce costs.
Traditional forecasting approaches rely on painstakingly customized turbulence indexes, which are less effective in dynamic and complex weather conditions.
We propose a machine learning based turbulence forecasting system due to two challenges: (1) Complex-temporal correlations, and (2) scarcity, very limited turbulence labels can be obtained.
arXiv Detail & Related papers (2020-10-26T21:14:15Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Automating Turbulence Modeling by Multi-Agent Reinforcement Learning [4.784658158364452]
We introduce multi-agent reinforcement learning as an automated discovery tool of turbulence models.
We demonstrate the potential of this approach on Large Eddy Simulations of homogeneous and isotropic turbulence.
arXiv Detail & Related papers (2020-05-18T18:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.