A posteriori learning of quasi-geostrophic turbulence parametrization:
an experiment on integration steps
- URL: http://arxiv.org/abs/2111.06841v1
- Date: Fri, 12 Nov 2021 17:59:52 GMT
- Title: A posteriori learning of quasi-geostrophic turbulence parametrization:
an experiment on integration steps
- Authors: Hugo Frezat, Julien Le Sommer, Ronan Fablet, Guillaume Balarac and
Redouane Lguensat
- Abstract summary: We show that learning a model jointly with the dynamical solver and a meaningful $textita posteriori$-based loss function lead to stable and realistic simulations.
- Score: 4.212677330241214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling the subgrid-scale dynamics of reduced models is a long standing open
problem that finds application in ocean, atmosphere and climate predictions
where direct numerical simulation (DNS) is impossible. While neural networks
(NNs) have already been applied to a range of three-dimensional problems with
success, the backward energy transfer of two-dimensional flows still remains a
stability issue for trained models. We show that learning a model jointly with
the dynamical solver and a meaningful $\textit{a posteriori}$-based loss
function lead to stable and realistic simulations when applied to
quasi-geostrophic turbulence.
Related papers
- Continuous-Time SO(3) Forecasting with Savitzky--Golay Neural Controlled Differential Equations [51.510040541600176]
This work proposes modeling continuous-time rotational object dynamics on $SO(3)$.<n>Unlike existing methods that rely on simplified motion assumptions, our method learns a general latent dynamical system of the underlying object trajectory.<n> Experimental results on real-world data demonstrate compelling forecasting capabilities compared to existing approaches.
arXiv Detail & Related papers (2025-06-07T12:41:50Z) - Advanced long-term earth system forecasting by learning the small-scale nature [74.19833913539053]
We present Triton, an AI framework designed to address this fundamental challenge.<n>Inspired by increasing grids to explicitly resolve small scales in numerical models, Triton employs a hierarchical architecture processing information across multiple resolutions to mitigate spectral bias.<n>We demonstrate Triton's superior performance on challenging forecast tasks, achieving stable year-long global temperature forecasts, skillful Kuroshio eddy predictions till 120 days, and high-fidelity turbulence simulations.
arXiv Detail & Related papers (2025-05-26T02:49:00Z) - Learning Effective Dynamics across Spatio-Temporal Scales of Complex Flows [4.798951413107239]
We propose a novel framework, Graph-based Learning of Effective Dynamics (Graph-LED), that leverages graph neural networks (GNNs) and an attention-based autoregressive model.
We evaluate the proposed approach on a suite of fluid dynamics problems, including flow past a cylinder and flow over a backward-facing step over a range of Reynolds numbers.
arXiv Detail & Related papers (2025-02-11T22:14:30Z) - Recovering implicit physics model under real-world constraints [6.2178318166123185]
We propose a novel liquid time constant neural network (LTC-NN) based architecture to recover underlying model of physical dynamics from real-world data.
The LTC-NN architecture is more accurate in recovering implicit physics model coefficients than the state-of-the-art sparse model recovery approaches.
arXiv Detail & Related papers (2024-12-03T07:11:21Z) - CoNFiLD-inlet: Synthetic Turbulence Inflow Using Generative Latent Diffusion Models with Neural Fields [7.646019826936172]
Eddy-resolving turbulence simulations require inflow conditions that accurately replicate the complex, multi-scale structures of turbulence.
Traditional recycling-based methods rely on computationally expensive simulations, while existing synthetic inflow generators often fail to reproduce realistic coherent structures of turbulence.
We present CoNFiLD-inlet, a novel DL-based inflow generator that integrates latent space to produce realistic, inflow turbulence.
arXiv Detail & Related papers (2024-11-21T18:13:03Z) - Fourier neural operators for spatiotemporal dynamics in two-dimensional turbulence [3.0954913678141627]
We identify that the Fourier neural operator (FNO) based models combined with a partial differential equation (PDE) solver can accelerate fluid dynamic simulations.
We also discuss the pitfalls of purely data-driven approaches that need to be avoided by the machine learning models to become viable and competitive tools for long time simulations of turbulence.
arXiv Detail & Related papers (2024-09-23T02:02:02Z) - Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
This work introduces a 4D generative diffusion model and a physics-informed guidance technique that enables the generation of realistic sequences of flow states.
Our findings indicate that the proposed method can successfully sample entire subsequences from the turbulent manifold.
This advancement opens doors for the application of generative modeling in analyzing the temporal evolution of turbulent flows.
arXiv Detail & Related papers (2024-06-17T10:21:01Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
This paper presents a physics-enhanced neural operator (PENO) that incorporates physical knowledge of partial differential equations (PDEs) to accurately model flow dynamics.
The proposed method is evaluated through its performance on two distinct sets of 3D turbulent flow data.
arXiv Detail & Related papers (2024-05-31T20:05:17Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
We present DeepSimHO, a novel deep-learning pipeline that combines forward physics simulation and backward gradient approximation with a neural network.
Our method noticeably improves the stability of the estimation and achieves superior efficiency over test-time optimization.
arXiv Detail & Related papers (2023-10-11T05:34:36Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
Image distortion by atmospheric turbulence is a critical problem in long-range optical imaging systems.
Fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions.
This paper proposes the Physics-integrated Restoration Network (PiRN) to help the network to disentangle theity from the degradation and the underlying image.
arXiv Detail & Related papers (2023-07-20T05:49:21Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - A Neural PDE Solver with Temporal Stencil Modeling [44.97241931708181]
Recent Machine Learning (ML) models have shown new promises in capturing important dynamics in high-resolution signals.
This study shows that significant information is often lost in the low-resolution down-sampled features.
We propose a new approach, which combines the strengths of advanced time-series sequence modeling and state-of-the-art neural PDE solvers.
arXiv Detail & Related papers (2023-02-16T06:13:01Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
We introduce a method for inferring and predicting latent states in state-space models where observations can only be simulated, and transition dynamics are unknown.
We propose a way of doing likelihood-free inference (LFI) of states and state prediction with a limited number of simulations.
arXiv Detail & Related papers (2021-11-02T12:33:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Neural Ordinary Differential Equations for Data-Driven Reduced Order
Modeling of Environmental Hydrodynamics [4.547988283172179]
We explore the use of Neural Ordinary Differential Equations for fluid flow simulation.
Test problems we consider include incompressible flow around a cylinder and real-world applications of shallow water hydrodynamics in riverine and estuarine systems.
Our findings indicate that Neural ODEs provide an elegant framework for stable and accurate evolution of latent-space dynamics with a promising potential of extrapolatory predictions.
arXiv Detail & Related papers (2021-04-22T19:20:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.