論文の概要: Continuous Self-Improvement of Large Language Models by Test-time Training with Verifier-Driven Sample Selection
- arxiv url: http://arxiv.org/abs/2505.19475v2
- Date: Wed, 28 May 2025 11:04:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 12:33:41.746073
- Title: Continuous Self-Improvement of Large Language Models by Test-time Training with Verifier-Driven Sample Selection
- Title(参考訳): 検証駆動サンプル選択によるテスト時間学習による大規模言語モデルの継続的自己改善
- Authors: Mohammad Mahdi Moradi, Hossam Amer, Sudhir Mudur, Weiwei Zhang, Yang Liu, Walid Ahmed,
- Abstract要約: VDS-TTT(Verifier-Driven Sample Selection for Test-Time Training)と呼ばれる新しいフレームワークを導入する。
学習した検証器を用いて、生成された応答のプールをスコアし、高いランクの擬似ラベル付き例からのみ選び、微調整を施す。
低ランクなLoRAアダプタパラメータのみを微調整し、適応効率と高速収束を確保する。
- 参考スコア(独自算出の注目度): 6.471199527741301
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning to adapt pretrained language models to unlabeled, out-of-distribution data is a critical challenge, as models often falter on structurally novel reasoning tasks even while excelling within their training distribution. We introduce a new framework called VDS-TTT - Verifier-Driven Sample Selection for Test-Time Training to efficiently address this. We use a learned verifier to score a pool of generated responses and select only from high ranking pseudo-labeled examples for fine-tuned adaptation. Specifically, for each input query our LLM generates N candidate answers; the verifier assigns a reliability score to each, and the response with the highest confidence and above a fixed threshold is paired with its query for test-time training. We fine-tune only low-rank LoRA adapter parameters, ensuring adaptation efficiency and fast convergence. Our proposed self-supervised framework is the first to synthesize verifier driven test-time training data for continuous self-improvement of the model. Experiments across three diverse benchmarks and three state-of-the-art LLMs demonstrate that VDS-TTT yields up to a 32.29% relative improvement over the base model and a 6.66% gain compared to verifier-based methods without test-time training, highlighting its effectiveness and efficiency for on-the-fly large language model adaptation.
- Abstract(参考訳): 事前学習された言語モデルをラベル付けされていないアウト・オブ・ディストリビューションデータに適応させる学習は重要な課題である。
VDS-TTT(Verifier-Driven Sample Selection for Test-Time Training)と呼ばれる新しいフレームワークを導入する。
学習した検証器を用いて、生成された応答のプールをスコアし、高いランクの擬似ラベル付き例からのみ選び、微調整を施す。
具体的には、LLMは入力クエリ毎にNつの候補回答を生成し、検証者は信頼性スコアをそれぞれ割り当て、信頼度が最も高く、一定のしきい値以上の応答は、テスト時間トレーニングのためのクエリとペアリングされる。
低ランクなLoRAアダプタパラメータのみを微調整し、適応効率と高速収束を確保する。
提案する自己教師型フレームワークは,モデルの連続的自己改善のための検証器駆動テストタイムトレーニングデータを初めて合成する。
3つの多種多様なベンチマークと3つの最先端LCMによる実験により、VDS-TTTはベースモデルよりも32.29%改善し、6.66%向上した。
関連論文リスト
- AdaSTaR: Adaptive Data Sampling for Training Self-Taught Reasoners [19.27201880632717]
Self-Taughters (STaR)は、自己改善推論言語モデル(LM)のトレーニングパイプラインの不可欠な部分である。
本稿では,2つの適応サンプリング原理を組み込んだ新しいアルゴリズムであるAdaptive STaR(AdaSTaR)を紹介する。
AdaSTaRは全てのインスタンスで最高のテスト精度を達成し、幅広いベースラインリストに対して平均58.6%のトレーニングFLOPを削減している。
論文 参考訳(メタデータ) (2025-05-22T07:24:11Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
S$2$Rはモデルに推論時の自己検証と自己正当性を教えることによってLLM推論を強化する効率的なフレームワークである。
以上の結果から,Qwen2.5-math-7Bの精度は51.0%から81.6%に向上した。
論文 参考訳(メタデータ) (2025-02-18T13:40:22Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
オープンエンド生成タスクをトークンレベルの予測タスクに再構成する。
我々はLSMに答えを自己評価するように指示する。
自己評価に基づくスコアリング手法をベンチマークする。
論文 参考訳(メタデータ) (2023-12-14T19:09:22Z) - Point-TTA: Test-Time Adaptation for Point Cloud Registration Using
Multitask Meta-Auxiliary Learning [17.980649681325406]
我々は、ポイントクラウド登録(PCR)のための新しいテスト時間適応フレームワークであるPoint-TTAを提案する。
我々のモデルは、テストデータの事前の知識を必要とせずに、テスト時に目に見えない分布に適応することができる。
訓練中は, 補助タスクによる適応モデルにより主タスクの精度が向上するように, メタ補助学習アプローチを用いて訓練を行う。
論文 参考訳(メタデータ) (2023-08-31T06:32:11Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [117.72709110877939]
テスト時間適応(TTA)は、事前訓練されたモデルをテスト中に、予測する前にラベルのないデータに適応する可能性がある。
TTAはテスト時間領域適応、テスト時間バッチ適応、オンラインテスト時間適応といったテストデータの形態に基づいて、いくつかの異なるグループに分類される。
論文 参考訳(メタデータ) (2023-03-27T16:32:21Z) - Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language
Models [107.05966685291067]
テスト時間プロンプトチューニング (TPT) を提案し, 適応的なプロンプトを1つのテストサンプルで学習する。
TPTはCLIPのゼロショットトップ1の精度を平均3.6%改善する。
クロスデータセットの一般化を目に見えないカテゴリで評価する際、PTは追加のトレーニングデータを使用する最先端のアプローチと同等に機能する。
論文 参考訳(メタデータ) (2022-09-15T17:55:11Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptationは、ソースドメインでトレーニングされたモデルに適応して、テストサンプルの予測を改善することを目的としている。
単一発話テスト時間適応 (SUTA) は音声領域における最初のTTA研究である。
論文 参考訳(メタデータ) (2022-03-27T06:38:39Z) - Representative Subset Selection for Efficient Fine-Tuning in
Self-Supervised Speech Recognition [6.450618373898492]
ASRのための自己教師型音声モデルにおいて、効率的な微調整を行うために最適なデータのサブセットを同定する作業を検討する。
自己教師型ASRにおける代表サブセット選択のためのCOWERAGEアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-18T10:12:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。