Hierarchical Memory for High-Efficiency Long-Term Reasoning in LLM Agents
- URL: http://arxiv.org/abs/2507.22925v1
- Date: Wed, 23 Jul 2025 12:45:44 GMT
- Title: Hierarchical Memory for High-Efficiency Long-Term Reasoning in LLM Agents
- Authors: Haoran Sun, Shaoning Zeng,
- Abstract summary: We propose a hierarchical memory architecture for Large Language Model Agents (LLM Agents)<n>Each memory vector is embedded with a positional index encoding pointing to its semantically related sub-memories in the next layer.<n>During the reasoning phase, an index-based routing mechanism enables efficient, layer-by-layer retrieval without performing exhaustive similarity computations.
- Score: 19.04968632268433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-term memory is one of the key factors influencing the reasoning capabilities of Large Language Model Agents (LLM Agents). Incorporating a memory mechanism that effectively integrates past interactions can significantly enhance decision-making and contextual coherence of LLM Agents. While recent works have made progress in memory storage and retrieval, such as encoding memory into dense vectors for similarity-based search or organizing knowledge in the form of graph, these approaches often fall short in structured memory organization and efficient retrieval. To address these limitations, we propose a Hierarchical Memory (H-MEM) architecture for LLM Agents that organizes and updates memory in a multi-level fashion based on the degree of semantic abstraction. Each memory vector is embedded with a positional index encoding pointing to its semantically related sub-memories in the next layer. During the reasoning phase, an index-based routing mechanism enables efficient, layer-by-layer retrieval without performing exhaustive similarity computations. We evaluate our method on five task settings from the LoCoMo dataset. Experimental results show that our approach consistently outperforms five baseline methods, demonstrating its effectiveness in long-term dialogue scenarios.
Related papers
- RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory [57.449129198822476]
RCR is a role-aware context routing framework for multi-agent large language model (LLM) systems.<n>It dynamically selects semantically relevant memory subsets for each agent based on its role and task stage.<n>A lightweight scoring policy guides memory selection, and agent outputs are integrated into a shared memory store.
arXiv Detail & Related papers (2025-08-06T21:59:34Z) - Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions [19.51727855436013]
We term agents with memory mechanisms as memory agents.<n>In this paper, we identify four core competencies essential for memory agents: accurate retrieval, test-time learning, long-range understanding, and conflict resolution.<n>Existing datasets either rely on limited context lengths or are tailored for static, long-context settings like book-based QA.<n>No existing benchmarks cover all four competencies. Therefore, we introduce MemoryAgentBench, a new benchmark specifically designed for memory agents.
arXiv Detail & Related papers (2025-07-07T17:59:54Z) - MemOS: A Memory OS for AI System [116.87568350346537]
Large Language Models (LLMs) have become an essential infrastructure for Artificial General Intelligence (AGI)<n>Existing models mainly rely on static parameters and short-lived contextual states, limiting their ability to track user preferences or update knowledge over extended periods.<n>MemOS is a memory operating system that treats memory as a manageable system resource.
arXiv Detail & Related papers (2025-07-04T17:21:46Z) - MEM1: Learning to Synergize Memory and Reasoning for Efficient Long-Horizon Agents [84.62985963113245]
We introduce MEM1, an end-to-end reinforcement learning framework that enables agents to operate with constant memory across long multi-turn tasks.<n>At each turn, MEM1 updates a compact shared internal state that jointly supports memory consolidation and reasoning.<n>We show that MEM1-7B improves performance by 3.5x while reducing memory usage by 3.7x compared to Qwen2.5-14B-Instruct on a 16-objective multi-hop QA task.
arXiv Detail & Related papers (2025-06-18T19:44:46Z) - Towards Multi-Granularity Memory Association and Selection for Long-Term Conversational Agents [73.77930932005354]
We propose MemGAS, a framework that enhances memory consolidation by constructing multi-granularity association, adaptive selection, and retrieval.<n>MemGAS is based on multi-granularity memory units and employs Gaussian Mixture Models to cluster and associate new memories with historical ones.<n>Experiments on four long-term memory benchmarks demonstrate that MemGAS outperforms state-of-the-art methods on both question answer and retrieval tasks.
arXiv Detail & Related papers (2025-05-26T06:13:07Z) - Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directions [55.19217798774033]
Memory is a fundamental component of AI systems, underpinning large language models (LLMs)-based agents.<n>In this survey, we first categorize memory representations into parametric and contextual forms.<n>We then introduce six fundamental memory operations: Consolidation, Updating, Indexing, Forgetting, Retrieval, and Compression.
arXiv Detail & Related papers (2025-05-01T17:31:33Z) - Cognitive Memory in Large Language Models [8.059261857307881]
This paper examines memory mechanisms in Large Language Models (LLMs), emphasizing their importance for context-rich responses, reduced hallucinations, and improved efficiency.<n>It categorizes memory into sensory, short-term, and long-term, with sensory memory corresponding to input prompts, short-term memory processing immediate context, and long-term memory implemented via external databases or structures.
arXiv Detail & Related papers (2025-04-03T09:58:19Z) - On the Structural Memory of LLM Agents [20.529239764968654]
Memory plays a pivotal role in enabling large language model(LLM)-based agents to engage in complex and long-term interactions.<n>This paper investigates how memory structures and memory retrieval methods affect the performance of LLM-based agents.
arXiv Detail & Related papers (2024-12-17T04:30:00Z) - Empowering Working Memory for Large Language Model Agents [9.83467478231344]
This paper explores the potential of applying cognitive psychology's working memory frameworks to large language models (LLMs)
An innovative model is proposed incorporating a centralized Working Memory Hub and Episodic Buffer access to retain memories across episodes.
This architecture aims to provide greater continuity for nuanced contextual reasoning during intricate tasks and collaborative scenarios.
arXiv Detail & Related papers (2023-12-22T05:59:00Z) - SCM: Enhancing Large Language Model with Self-Controlled Memory Framework [54.33686574304374]
Large Language Models (LLMs) are constrained by their inability to process lengthy inputs, resulting in the loss of critical historical information.<n>We propose the Self-Controlled Memory (SCM) framework to enhance the ability of LLMs to maintain long-term memory and recall relevant information.
arXiv Detail & Related papers (2023-04-26T07:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.