Situationally-Aware Dynamics Learning
- URL: http://arxiv.org/abs/2505.19574v1
- Date: Mon, 26 May 2025 06:40:11 GMT
- Title: Situationally-Aware Dynamics Learning
- Authors: Alejandro Murillo-Gonzalez, Lantao Liu,
- Abstract summary: We propose a novel framework for online learning of hidden state representations.<n>Our approach explicitly models the influence of unobserved parameters on both transition dynamics and reward structures.<n>Experiments in both simulation and real world reveal significant improvements in data efficiency, policy performance, and the emergence of safer, adaptive navigation strategies.
- Score: 57.698553219660376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous robots operating in complex, unstructured environments face significant challenges due to latent, unobserved factors that obscure their understanding of both their internal state and the external world. Addressing this challenge would enable robots to develop a more profound grasp of their operational context. To tackle this, we propose a novel framework for online learning of hidden state representations, with which the robots can adapt in real-time to uncertain and dynamic conditions that would otherwise be ambiguous and result in suboptimal or erroneous behaviors. Our approach is formalized as a Generalized Hidden Parameter Markov Decision Process, which explicitly models the influence of unobserved parameters on both transition dynamics and reward structures. Our core innovation lies in learning online the joint distribution of state transitions, which serves as an expressive representation of latent ego- and environmental-factors. This probabilistic approach supports the identification and adaptation to different operational situations, improving robustness and safety. Through a multivariate extension of Bayesian Online Changepoint Detection, our method segments changes in the underlying data generating process governing the robot's dynamics. The robot's transition model is then informed with a symbolic representation of the current situation derived from the joint distribution of latest state transitions, enabling adaptive and context-aware decision-making. To showcase the real-world effectiveness, we validate our approach in the challenging task of unstructured terrain navigation, where unmodeled and unmeasured terrain characteristics can significantly impact the robot's motion. Extensive experiments in both simulation and real world reveal significant improvements in data efficiency, policy performance, and the emergence of safer, adaptive navigation strategies.
Related papers
- Robust Visual Localization via Semantic-Guided Multi-Scale Transformer [3.3106947066548167]
We propose a framework that combines multi-scale feature learning with semantic scene understanding.<n>Our approach employs a hierarchical Transformer with cross-scale attention to fuse geometric details and contextual cues, preserving spatial precision while adapting to environmental changes.
arXiv Detail & Related papers (2025-06-10T07:44:53Z) - Safety-Critical Traffic Simulation with Guided Latent Diffusion Model [8.011306318131458]
Safety-critical traffic simulation plays a crucial role in evaluating autonomous driving systems.<n>We propose a guided latent diffusion model (LDM) capable of generating physically realistic and adversarial scenarios.<n>Our work provides an effective tool for realistic safety-critical scenario simulation, paving the way for more robust evaluation of autonomous driving systems.
arXiv Detail & Related papers (2025-05-01T13:33:34Z) - Diffeomorphic Obstacle Avoidance for Contractive Dynamical Systems via Implicit Representations [0.6144680854063939]
This paper addresses the challenge of ensuring both safety and robustness in dynamic robot skills learned from demonstrations.<n>We build on neural contractive dynamical systems to provide robust extrapolation of the learned skills.<n>We design a full-body obstacle avoidance strategy that preserves contraction stability via diffeomorphic transforms.
arXiv Detail & Related papers (2025-04-26T08:56:51Z) - Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy [56.424032454461695]
We present Dita, a scalable framework that leverages Transformer architectures to directly denoise continuous action sequences.<n>Dita employs in-context conditioning -- enabling fine-grained alignment between denoised actions and raw visual tokens from historical observations.<n>Dita effectively integrates cross-embodiment datasets across diverse camera perspectives, observation scenes, tasks, and action spaces.
arXiv Detail & Related papers (2025-03-25T15:19:56Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer.<n>By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARD consists of three unexpected disaster scenarios, including fire, flood, and wind.
This benchmark enables us to evaluate autonomous agents' decision-making capabilities across various pipelines.
arXiv Detail & Related papers (2024-01-23T18:59:43Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Amortized Network Intervention to Steer the Excitatory Point Processes [8.15558505134853]
Excitatory point processes (i.e., event flows) occurring over dynamic graphs provide a fine-grained model to capture how discrete events may spread over time and space.
How to effectively steer the event flows by modifying the dynamic graph structures presents an interesting problem, motivated by curbing the spread of infectious diseases.
We design an Amortized Network Interventions framework, allowing for the pooling of optimal policies from history and other contexts.
arXiv Detail & Related papers (2023-10-06T11:17:28Z) - Feature Interaction Aware Automated Data Representation Transformation [27.26916497306978]
We develop a hierarchical reinforcement learning structure with cascading Markov Decision Processes to automate feature and operation selection.
We reward agents based on the interaction strength between selected features, resulting in intelligent and efficient exploration of the feature space that emulates human decision-making.
arXiv Detail & Related papers (2023-09-29T06:48:16Z) - Attention-based Adversarial Appearance Learning of Augmented Pedestrians [49.25430012369125]
We propose a method to synthesize realistic data for the pedestrian recognition task.
Our approach utilizes an attention mechanism driven by an adversarial loss to learn domain discrepancies.
Our experiments confirm that the proposed adaptation method is robust to such discrepancies and reveals both visual realism and semantic consistency.
arXiv Detail & Related papers (2021-07-06T15:27:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.