論文の概要: TailorKV: A Hybrid Framework for Long-Context Inference via Tailored KV Cache Optimization
- arxiv url: http://arxiv.org/abs/2505.19586v2
- Date: Tue, 27 May 2025 03:16:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 14:37:20.162584
- Title: TailorKV: A Hybrid Framework for Long-Context Inference via Tailored KV Cache Optimization
- Title(参考訳): TailorKV: Tailored KVキャッシュ最適化による長期推論のためのハイブリッドフレームワーク
- Authors: Dingyu Yao, Bowen Shen, Zheng Lin, Wei Liu, Jian Luan, Bin Wang, Weiping Wang,
- Abstract要約: 生成型大規模言語モデル(LLM)におけるキーバリューキャッシュは、かなりのメモリオーバーヘッドをもたらす。
既存の作業は、KVキャッシュをオフロードまたは圧縮することで、この負担を軽減する。
本稿では,量子化とオフロードをシームレスに統合するハイブリッド圧縮手法であるTailorKVを提案する。
- 参考スコア(独自算出の注目度): 21.229296254354878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Key-Value (KV) cache in generative large language models (LLMs) introduces substantial memory overhead. Existing works mitigate this burden by offloading or compressing the KV cache. However, loading the entire cache incurs significant latency due to PCIe bandwidth bottlenecks in CPU-GPU communication, while aggressive compression causes notable performance degradation. We identify that certain layers in the LLM need to maintain global information and are unsuitable for selective loading. In contrast, other layers primarily focus on a few tokens with dominant activations that potentially incur substantial quantization error. This observation leads to a key insight that loading dominant tokens and quantizing all tokens can complement each other. Building on this insight, we propose a hybrid compression method, TailorKV, which seamlessly integrates quantization and offloading. TailorKV develops an inference framework along with a hardware-friendly implementation that leverages these complementary characteristics. Extensive long-context evaluations exhibit that TailorKV achieves nearly lossless performance under aggressive compression settings, outperforming the state-of-the-art. Particularly, the Llama-3.1-8B with 128k context can be served within a single RTX 3090 GPU, reaching 82 ms per token during decoding.
- Abstract(参考訳): 生成的大規模言語モデル(LLM)におけるキーバリュー(KV)キャッシュは、かなりのメモリオーバーヘッドをもたらす。
既存の作業は、KVキャッシュをオフロードまたは圧縮することで、この負担を軽減する。
しかし、CPU-GPU通信におけるPCIe帯域幅のボトルネックのため、キャッシュ全体をロードすると大きな遅延が発生し、一方アグレッシブ圧縮は顕著なパフォーマンス低下を引き起こす。
LLMのいくつかのレイヤはグローバルな情報を維持する必要があり、選択的なロードには適さない。
対照的に、他のレイヤは主に、実質的な量子化エラーを引き起こす可能性のある主要なアクティベーションを持ついくつかのトークンに焦点を当てている。
この観察は、支配的なトークンをロードし、すべてのトークンを定量化することで互いに補完できるという重要な洞察につながります。
この知見に基づいて,量子化とオフロードをシームレスに統合するハイブリッド圧縮手法であるTailorKVを提案する。
TailorKVは、これらの相補的な特性を活用するハードウェアフレンドリーな実装とともに、推論フレームワークを開発している。
広範囲にわたる長期コンテキスト評価では、TalorKVは攻撃的な圧縮設定下でほぼロスレスのパフォーマンスを達成し、最先端よりも優れていた。
特に、128kコンテキストのLlama-3.1-8Bは単一のRTX 3090 GPUで提供でき、復号時にトークン当たり82msに達する。
関連論文リスト
- HCAttention: Extreme KV Cache Compression via Heterogeneous Attention Computing for LLMs [13.013668526921778]
既存のKVキャッシュ圧縮手法は、メモリが85%以上削減されたときに顕著な性能劣化を示す。
我々は、鍵量子化、値オフロード、動的KV消去を統合した異種アテンションフレームワークであるHCAttentionを提案する。
また,LongBenchベンチマークを用いて,KVキャッシュメモリのフットプリントを25%に縮めながら,本手法が完全アテンションモデルの精度を維持することを示した。
論文 参考訳(メタデータ) (2025-07-26T06:43:14Z) - Compactor: Calibrated Query-Agnostic KV Cache Compression with Approximate Leverage Scores [37.41699761967978]
KVキャッシュは、しばしば現実世界のデプロイメントにおいて、主要なリソースボトルネックである。
パラメータフリーでクエリに依存しないKV圧縮戦略であるCompactorを提案する。
本研究では,コンパクタがLongbench上でのフルKV性能を実現するとともに,KVメモリの負荷を平均63%低減することを示す。
論文 参考訳(メタデータ) (2025-07-10T20:03:35Z) - Dialogue Without Limits: Constant-Sized KV Caches for Extended Responses in LLMs [6.222287867011644]
精度を保ちながら一定サイズのKVキャッシュを維持する推論時間手法であるMorphKVを提案する。
保持や損失圧縮とは異なり、MorphKVは最近のトークンの注意パターンによってガイドされる軽量更新を通じてKVキャッシュを反復的に洗練する。
我々の研究では、52.9$%のメモリセーブと18.2$%の精度が、最先端の先行研究と比較して高いことを示している。
論文 参考訳(メタデータ) (2025-03-02T18:12:50Z) - DBudgetKV: Dynamic Budget in KV Cache Compression for Ensuring Optimal Performance [125.81664663201282]
我々はDBudgetKVと呼ばれる新しいKVキャッシュ圧縮手法を提案する。
これは、残りのKVキャッシュがフルキャッシュのパフォーマンスにマッチしそうにない場合に、注意に基づくメトリクスを信号として、プルーニングプロセスを停止させる。
提案手法は,メモリ空間を最適化するだけでなく,既存の手法に比べて推論時間を短縮する。
論文 参考訳(メタデータ) (2025-02-24T06:33:39Z) - More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression [71.42818367729573]
大規模言語モデル(LLM)では、KVキャッシュのメモリ使用量は推論において重大なボトルネックとなっている。
KVプルーニングやKV量子化を含む主流のKV圧縮法は、主にトークンまたは精度寸法を別々に扱う。
本稿では,KVキャッシュ圧縮におけるトークン精度トレードオフを包括的に検討する。
論文 参考訳(メタデータ) (2024-12-17T09:20:31Z) - ClusterKV: Manipulating LLM KV Cache in Semantic Space for Recallable Compression [10.003118268356017]
ロングコンテキストは推論効率に重大な課題をもたらす。
本稿では,意味クラスタの粒度でトークンをリコールするClusterKVを紹介する。
実験結果から、ClusterKVは32kのコンテキスト長を持つ様々なタスクにおいて、無視可能な精度の損失が得られることがわかった。
論文 参考訳(メタデータ) (2024-12-04T10:58:27Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [38.732413451399]
ピラミッドKVは新規かつ効果的なKVキャッシュ圧縮法である。
提案手法は,KVキャッシュの12%しか保持せず,完全なKVキャッシュでモデルの性能と一致していることを示す。
Needle-in-a-Haystack実験では、Praamid KVは長文理解の維持において競合する手法より優れている。
論文 参考訳(メタデータ) (2024-06-04T07:51:30Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
大規模言語モデル(LLM)における生成推論のメモリフットプリントを削減するプラグイン・アンド・プレイ方式である適応KVキャッシュ圧縮を導入する。
我々は,アテンションモジュールの本質的な構造を明らかにするために,ターゲットプロファイリングを行う。
認識された構造に基づいて、我々はKVキャッシュを適応的に構築する: 注意頭上の長距離コンテキストを排除し、局所的なコンテキストを強調し、特別なトークンを中心とした注意頭上の特別なトークンを排除し、すべてのトークンに広く参加する注目頭に対して標準のKVキャッシュのみを使用する。
論文 参考訳(メタデータ) (2023-10-03T05:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。