RLSR: Reinforcement Learning from Self Reward
- URL: http://arxiv.org/abs/2505.08827v2
- Date: Wed, 06 Aug 2025 23:51:16 GMT
- Title: RLSR: Reinforcement Learning from Self Reward
- Authors: Toby Simonds, Kevin Lopez, Akira Yoshiyama, Dominique Garmier,
- Abstract summary: We show that large language models can effectively self-improve through self-judging without reference solutions.<n>Our experiments show that models can provide reliable reward signals without ground truth answers.<n>This work represents a significant step toward autonomous AI systems that continuously improve through self-directed learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models can generate solutions to complex problems, but training them with reinforcement learning typically requires verifiable rewards that are expensive to create and not possible for all domains. We demonstrate that LLMs can effectively self-improve through self-judging without reference solutions, leveraging the inherent asymmetry between generating and verifying solutions. Our experiments show that models can provide reliable reward signals without ground truth answers, enabling reinforcement learning in domains where verifiable rewards are impractical. By implementing self-judging across Countdown puzzles and integration problems, we achieve performance comparable to formal verification without ground truth solutions. Most notably, Qwen 2.5 7B DeepSeek Distilled trained with self-rewards qualifies for the prestigious MIT Integration Bee competition, performance through self-supervised improvement. When combined with synthetic question generation, we establish a complete self-improvement loop where models generate practice problems, solve them, and evaluate their own performance without any external validation. Our findings demonstrate that LLM judges can provide effective reward signals for training, unlocking reinforcement learning in countless domains previously limited by reward engineering challenges. This work represents a significant step toward autonomous AI systems that continuously improve through self-directed learning rather than human-guided training, potentially accelerating progress across domains where training data is scarce or evaluation is complex.
Related papers
- Can Large Reasoning Models Self-Train? [58.953117118687096]
Scaling the performance of large language models increasingly depends on methods that reduce reliance on human supervision.<n>We propose an online self-training reinforcement learning algorithm that leverages the model's self-consistency to infer correctness signals and train without any ground-truth supervision.
arXiv Detail & Related papers (2025-05-27T17:16:00Z) - Learning to Reason without External Rewards [100.27210579418562]
Training large language models (LLMs) for complex reasoning via Reinforcement Learning with Verifiable Rewards (RLVR) is effective but limited by reliance on costly, domain-specific supervision.<n>We explore Reinforcement Learning from Internal Feedback (RLIF), a framework that enables LLMs to learn from intrinsic signals without external rewards or labeled data.<n>We propose Intuitor, an RLIF method that uses a model's own confidence, termed self-certainty, as its sole reward signal.
arXiv Detail & Related papers (2025-05-26T07:01:06Z) - Trust, But Verify: A Self-Verification Approach to Reinforcement Learning with Verifiable Rewards [67.86091419220816]
Large Language Models (LLMs) show great promise in complex reasoning.<n>A prevalent issue is superficial self-reflection'', where models fail to robustly verify their own outputs.<n>We introduce RISE (Reinforcing Reasoning with Self-Verification), a novel online RL framework designed to tackle this.
arXiv Detail & Related papers (2025-05-19T17:59:31Z) - Absolute Zero: Reinforced Self-play Reasoning with Zero Data [61.46462130246158]
Reinforcement learning with verifiable rewards (RLVR) has shown promise in enhancing the reasoning capabilities of large language models.<n>We introduce the Absolute Zero Reasoner (AZR), a system that self-evolves its training curriculum and reasoning ability.<n>AZR achieves overall SOTA performance on coding and mathematical reasoning tasks, outperforming existing zero-setting models.
arXiv Detail & Related papers (2025-05-06T09:08:00Z) - LADDER: Self-Improving LLMs Through Recursive Problem Decomposition [0.0]
LADDER is a framework which enables Large Language Models to autonomously improve their problem-solving capabilities.<n>We demonstrate LADDER's effectiveness in the subject of mathematical integration.<n>We also introduce TTRL, where we perform reinforcement learning on variants of test problems at inference time.
arXiv Detail & Related papers (2025-03-02T05:16:43Z) - Learning to Solve and Verify: A Self-Play Framework for Code and Test Generation [69.62857948698436]
Recent advances in large language models (LLMs) have improved their performance on coding benchmarks.<n>However, improvement is plateauing due to the exhaustion of readily available high-quality data.<n>We propose Sol-Ver, a self-play solver-verifier framework that jointly improves a single model's code and test generation capacity.
arXiv Detail & Related papers (2025-02-20T18:32:19Z) - ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification [53.80183105328448]
Refine via Intrinsic Self-Verification (ReVISE) is an efficient framework that enables LLMs to self-correct their outputs through self-verification.<n>Our experiments on various reasoning tasks demonstrate that ReVISE achieves efficient self-correction and significantly improves reasoning performance.
arXiv Detail & Related papers (2025-02-20T13:50:02Z) - Iterative Deepening Sampling for Large Language Models [27.807695570974644]
Training models to achieve effective self-correction and self-correction remains a significant challenge.<n>We propose a novel iterative sampling algorithm framework designed to enhance self-correction and generate higher-quality samples.
arXiv Detail & Related papers (2025-02-08T04:39:51Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.<n>Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.<n>We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation [14.786100203787194]
Large language models demonstrate exceptional performance in simple code generation tasks but face challenges in tackling complex problems.<n>We propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths.<n>Our method operates entirely through the model itself without requiring additional supervision.
arXiv Detail & Related papers (2024-11-17T12:31:04Z) - Self-Consistency Preference Optimization [79.37880123635405]
We introduce self-consistency preference optimization (ScPO)
ScPO iteratively trains consistent answers to be preferred over inconsistent ones on unsupervised new problems.
On ZebraLogic, ScPO fine Llamatunes-3 8B to be superior to Llama-3 70B, Gemma-2 27B, and Claude-3 Haiku.
arXiv Detail & Related papers (2024-11-06T18:36:22Z) - Bridging the Imitation Gap by Adaptive Insubordination [88.35564081175642]
We show that when the teaching agent makes decisions with access to privileged information, this information is marginalized during imitation learning.
We propose 'Adaptive Insubordination' (ADVISOR) to address this gap.
ADVISOR dynamically weights imitation and reward-based reinforcement learning losses during training, enabling on-the-fly switching between imitation and exploration.
arXiv Detail & Related papers (2020-07-23T17:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.