論文の概要: Interleaved Reasoning for Large Language Models via Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2505.19640v1
- Date: Mon, 26 May 2025 07:58:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.26087
- Title: Interleaved Reasoning for Large Language Models via Reinforcement Learning
- Title(参考訳): 強化学習による大規模言語モデルのインターリーブ推論
- Authors: Roy Xie, David Qiu, Deepak Gopinath, Dong Lin, Yanchao Sun, Chong Wang, Saloni Potdar, Bhuwan Dhingra,
- Abstract要約: ロングチェーン・オブ・シント(CoT)は、大規模言語モデル(LLM)推論能力を向上する。
本稿では、強化学習(RL)を用いてLLMを指導し、マルチホップ質問に対する思考と回答をインターリーブする新しい学習パラダイムを提案する。
- 参考スコア(独自算出の注目度): 22.403928213802036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long chain-of-thought (CoT) significantly enhances large language models' (LLM) reasoning capabilities. However, the extensive reasoning traces lead to inefficiencies and an increased time-to-first-token (TTFT). We propose a novel training paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to interleave thinking and answering for multi-hop questions. We observe that models inherently possess the ability to perform interleaved reasoning, which can be further enhanced through RL. We introduce a simple yet effective rule-based reward to incentivize correct intermediate steps, which guides the policy model toward correct reasoning paths by leveraging intermediate signals generated during interleaved reasoning. Extensive experiments conducted across five diverse datasets and three RL algorithms (PPO, GRPO, and REINFORCE++) demonstrate consistent improvements over traditional think-answer reasoning, without requiring external tools. Specifically, our approach reduces TTFT by over 80% on average and improves up to 19.3% in Pass@1 accuracy. Furthermore, our method, trained solely on question answering and logical reasoning datasets, exhibits strong generalization ability to complex reasoning datasets such as MATH, GPQA, and MMLU. Additionally, we conduct in-depth analysis to reveal several valuable insights into conditional reward modeling.
- Abstract(参考訳): ロングチェーン・オブ・シント(CoT)は、大規模言語モデル(LLM)推論能力を著しく向上させる。
しかし、広範な推論の痕跡は、非効率性とTTFT(Time-to-first-token)の増加につながっている。
本稿では、強化学習(RL)を用いてLLMを指導し、マルチホップ質問に対する思考と回答をインターリーブする新しい学習パラダイムを提案する。
モデルが本質的にインターリーブ推論を行う能力を持っていることを観察する。
そこで本研究では,適切な推論経路へ向けてポリシーモデルを誘導し,インターリーブド推論時に発生する中間信号を活用することで,ルールベースの報酬をシンプルかつ効果的に導入する。
5つの多様なデータセットと3つのRLアルゴリズム(PPO、GRPO、REINFORCE++)にわたる大規模な実験では、外部ツールを必要とせず、従来の思考回答推論よりも一貫した改善が示された。
具体的には、TTFTを平均80%以上削減し、Pass@1の精度を19.3%向上させる。
さらに,質問応答と論理推論データセットのみを訓練した本手法は,MATH,GPQA,MMLUなどの複雑な推論データセットに対して,強力な一般化能力を示す。
さらに,条件付き報酬モデルに関するいくつかの貴重な知見を明らかにするために,詳細な分析を行う。
関連論文リスト
- Reinforced Latent Reasoning for LLM-based Recommendation [83.18146814163308]
大きな言語モデル(LLM)は、複雑な問題解決タスクにおいて印象的な推論能力を示している。
既存の手法は通常、明示的なチェーン・オブ・シント(CoT)データによる微調整に依存している。
本研究では, 明示的なCoT推論から, コンパクトで情報密度の高い潜伏推論へ移行する代替手法について検討する。
論文 参考訳(メタデータ) (2025-05-25T11:03:45Z) - Think Deep, Think Fast: Investigating Efficiency of Verifier-free Inference-time-scaling Methods [39.89239733570008]
本研究は推論モデルと非推論モデルの両方に対する推論時間スケーリング手法を包括的に解析する。
非推論モデルは、非常に高い推論予算にもかかわらず、推論モデルに大きく遅れていることが分かっています。
推論モデルでは、多数決は堅牢な推論戦略であり、一般的に競争力があるか、あるいは他のより洗練されたITC手法よりも優れていることが証明されている。
論文 参考訳(メタデータ) (2025-04-18T19:32:55Z) - SFT or RL? An Early Investigation into Training R1-Like Reasoning Large Vision-Language Models [39.551767637896404]
本研究は、LVLM(Large Vision-Language Models)のトレーニングにおいて、支配的な教師付き微調整(SFT)、強化学習(RL)パラダイムを再考する。
SFTは、専門家モデルから模倣された擬似推論経路を誘導することにより、その後のRLを著しく損なう可能性があることを示す。
我々は,LVLMにおける推論を支援するために設計された,新しいマルチモーダルデータセットであるVLAA-Thinkingを紹介する。
論文 参考訳(メタデータ) (2025-04-10T16:54:05Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
ビデオ理解におけるMLLMのポストトレーニング手法を評価するためのベンチマークであるSEED-Bench-R1を紹介する。
複雑な現実世界のビデオや、複数の質問の形式での複雑な日常的な計画タスクも含んでいる。
Qwen2-VL-Instruct-7Bをベースモデルとして、RLと教師付き微調整(SFT)を比較した。
我々の詳細な分析では、RLは視覚知覚を増強するが、しばしばコヒーレント推論連鎖を減少させる。
論文 参考訳(メタデータ) (2025-03-31T17:55:23Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
大規模言語モデル(LLM)は複雑なタスクにおいて顕著な機能を示した。
OpenAI o1とDeepSeek-R1の最近の進歩は、System-2推論ドメインのパフォーマンスをさらに改善した。
論文 参考訳(メタデータ) (2025-03-20T17:59:38Z) - Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
視覚言語モデル(VLM)におけるチェーン・オブ・シント(CoT)推論は、解釈可能性と信頼性を向上させるために不可欠である。
我々は,より詳細な回答を必要とする推論タスクに対して,短時間でVLMを訓練することはよくないことを示す。
論文 参考訳(メタデータ) (2024-10-21T17:00:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。