Error Typing for Smarter Rewards: Improving Process Reward Models with Error-Aware Hierarchical Supervision
- URL: http://arxiv.org/abs/2505.19706v1
- Date: Mon, 26 May 2025 08:56:36 GMT
- Title: Error Typing for Smarter Rewards: Improving Process Reward Models with Error-Aware Hierarchical Supervision
- Authors: Tej Deep Pala, Panshul Sharma, Amir Zadeh, Chuan Li, Soujanya Poria,
- Abstract summary: We introduce PathFinder-PRM, a novel hierarchical, error-aware discriminative PRM.<n>On PRMBench, PathFinder-PRM achieves a new state-of-the-art PRMScore of 67.7, outperforming the prior best (65.5) while using 3 times less data.
- Score: 20.09181711927194
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) are prone to hallucination, especially during multi-hop and reasoning-intensive tasks such as mathematical problem solving. While Outcome Reward Models verify only final answers, Process Reward Models (PRMs) score each intermediate step to steer generation toward coherent solutions. We introduce PathFinder-PRM, a novel hierarchical, error-aware discriminative PRM that first classifies math and consistency errors at each step, then combines these fine-grained signals to estimate step correctness. To train PathFinder-PRM, we construct a 400K-sample dataset by enriching the human-annotated PRM800K corpus and RLHFlow Mistral traces with three-dimensional step-level labels. On PRMBench, PathFinder-PRM achieves a new state-of-the-art PRMScore of 67.7, outperforming the prior best (65.5) while using 3 times less data. When applied to reward guided greedy search, our model yields prm@8 48.3, a +1.5 point gain over the strongest baseline. These results demonstrate that decoupled error detection and reward estimation not only boost fine-grained error detection but also substantially improve end-to-end, reward-guided mathematical reasoning with greater data efficiency.
Related papers
- Discriminative Policy Optimization for Token-Level Reward Models [55.98642069903191]
Process reward models (PRMs) provide more nuanced supervision compared to outcome reward models (ORMs)<n>Q-RM explicitly learns token-level Q-functions from preference data without relying on fine-grained annotations.<n>Reinforcement learning with Q-RM significantly enhances training efficiency, achieving convergence 12 times faster than ORM on GSM8K and 11 times faster than step-level PRM on MATH.
arXiv Detail & Related papers (2025-05-29T11:40:34Z) - Accurate and Diverse LLM Mathematical Reasoning via Automated PRM-Guided GFlowNets [6.001837672951086]
We introduce a novel Process Reward Model (PRM) trained automatically using Monte Carlo Tree Search.<n>We then adapt Generative Flow Networks (GFlowNets) to operate at the reasoning step level.<n> Empirical evaluation shows strong improvements in both accuracy and solution diversity on challenging mathematical benchmarks.
arXiv Detail & Related papers (2025-04-28T16:56:41Z) - R-PRM: Reasoning-Driven Process Reward Modeling [53.06844294668382]
Process Reward Models (PRMs) have emerged as a promising solution by evaluating each reasoning step.<n>Existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy.<n>We propose Reasoning-Driven Process Reward Modeling (R-PRM)<n>R-PRM generates seed data from limited annotations, effectively bootstrapping our model's reasoning capabilities.
arXiv Detail & Related papers (2025-03-27T09:23:08Z) - Towards Hierarchical Multi-Step Reward Models for Enhanced Reasoning in Large Language Models [33.547353090281284]
We propose a novel reward model approach called the Hierarchical Reward Model.<n>It evaluates both individual and consecutive reasoning steps at both fine-grained and coarse-grained levels.<n>It excels at assessing multi-step reasoning coherence, especially when flawed steps are later corrected through self-reflection.
arXiv Detail & Related papers (2025-03-16T15:18:40Z) - ProcessBench: Identifying Process Errors in Mathematical Reasoning [62.80402845414901]
We introduce ProcessBench for measuring the ability to identify erroneous steps in mathematical reasoning.<n>ProcessBench consists of 3,400 test cases, primarily focused on competition- and Olympiad-level math problems.<n>We conduct extensive evaluation on ProcessBench, involving two types of models: process reward models (PRMs) and critic models.
arXiv Detail & Related papers (2024-12-09T15:11:40Z) - Subtle Errors Matter: Preference Learning via Error-injected Self-editing [59.405145971637204]
We propose a novel preference learning framework called eRror-Injected Self-Editing (RISE)<n>RISE injects predefined subtle errors into pivotal tokens in reasoning or steps to construct hard pairs for error mitigation.<n>Experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH with only 4.5K training samples.
arXiv Detail & Related papers (2024-10-09T07:43:38Z) - Reinforcement Learning from Human Feedback without Reward Inference: Model-Free Algorithm and Instance-Dependent Analysis [16.288866201806382]
We develop a model-free RLHF best policy identification algorithm, called $mathsfBSAD$, without explicit reward model inference.<n>The algorithm identifies the optimal policy directly from human preference information in a backward manner.
arXiv Detail & Related papers (2024-06-11T17:01:41Z) - Training Large Language Models for Reasoning through Reverse Curriculum Reinforcement Learning [54.585428241509234]
We propose R$3$: Learning Reasoning through Reverse Curriculum Reinforcement Learning (RL)
RL employs only outcome supervision to achieve the benefits of process supervision for large language models.
arXiv Detail & Related papers (2024-02-08T16:46:26Z) - TACRED Revisited: A Thorough Evaluation of the TACRED Relation
Extraction Task [80.38130122127882]
TACRED is one of the largest, most widely used crowdsourced datasets in Relation Extraction (RE)
In this paper, we investigate the questions: Have we reached a performance ceiling or is there still room for improvement?
We find that label errors account for 8% absolute F1 test error, and that more than 50% of the examples need to be relabeled.
arXiv Detail & Related papers (2020-04-30T15:07:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.