Training Large Language Models for Reasoning through Reverse Curriculum Reinforcement Learning
- URL: http://arxiv.org/abs/2402.05808v2
- Date: Sun, 17 Mar 2024 09:02:02 GMT
- Title: Training Large Language Models for Reasoning through Reverse Curriculum Reinforcement Learning
- Authors: Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, Wei He, Yiwen Ding, Shichun Liu, Xin Guo, Junzhe Wang, Honglin Guo, Wei Shen, Xiaoran Fan, Yuhao Zhou, Shihan Dou, Xiao Wang, Xinbo Zhang, Peng Sun, Tao Gui, Qi Zhang, Xuanjing Huang,
- Abstract summary: We propose R$3$: Learning Reasoning through Reverse Curriculum Reinforcement Learning (RL)
RL employs only outcome supervision to achieve the benefits of process supervision for large language models.
- Score: 54.585428241509234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose R$^3$: Learning Reasoning through Reverse Curriculum Reinforcement Learning (RL), a novel method that employs only outcome supervision to achieve the benefits of process supervision for large language models. The core challenge in applying RL to complex reasoning is to identify a sequence of actions that result in positive rewards and provide appropriate supervision for optimization. Outcome supervision provides sparse rewards for final results without identifying error locations, whereas process supervision offers step-wise rewards but requires extensive manual annotation. R$^3$ overcomes these limitations by learning from correct demonstrations. Specifically, R$^3$ progressively slides the start state of reasoning from a demonstration's end to its beginning, facilitating easier model exploration at all stages. Thus, R$^3$ establishes a step-wise curriculum, allowing outcome supervision to offer step-level signals and precisely pinpoint errors. Using Llama2-7B, our method surpasses RL baseline on eight reasoning tasks by $4.1$ points on average. Notebaly, in program-based reasoning on GSM8K, it exceeds the baseline by $4.2$ points across three backbone models, and without any extra data, Codellama-7B + R$^3$ performs comparable to larger models or closed-source models.
Related papers
- SuperCorrect: Supervising and Correcting Language Models with Error-Driven Insights [89.56181323849512]
We propose SuperCorrect, a framework that uses a large teacher model to supervise and correct both the reasoning and reflection processes of a smaller student model.
In the first stage, we extract hierarchical high-level and detailed thought templates from the teacher model to guide the student model in eliciting more fine-grained reasoning thoughts.
In the second stage, we introduce cross-model collaborative direct preference optimization (DPO) to enhance the self-correction abilities of the student model.
arXiv Detail & Related papers (2024-10-11T17:25:52Z) - Reinforcement Learning from Human Feedback without Reward Inference: Model-Free Algorithm and Instance-Dependent Analysis [16.288866201806382]
We develop a model-free RLHF best policy identification algorithm, called $mathsfBSAD$, without explicit reward model inference.
The algorithm identifies the optimal policy directly from human preference information in a backward manner.
arXiv Detail & Related papers (2024-06-11T17:01:41Z) - Improving Large Language Models via Fine-grained Reinforcement Learning with Minimum Editing Constraint [104.53687944498155]
Reinforcement learning (RL) has been widely used in training large language models (LLMs)
We propose a new RL method named RLMEC that incorporates a generative model as the reward model.
Based on the generative reward model, we design the token-level RL objective for training and an imitation-based regularization for stabilizing RL process.
arXiv Detail & Related papers (2024-01-11T17:58:41Z) - OVM, Outcome-supervised Value Models for Planning in Mathematical Reasoning [15.59540726867483]
We argue that in guided decoding, assessing the potential of an incomplete reasoning path can be more advantageous than simply ensuring per-step correctness.
Inspired by the findings that $textitoutcome supervision for guided decoding essentially acts as a value model, we propose Outcome-supervised Value Model (OVM)
Our experiments on two multi-step mathematical reasoning datasets, GSM8K and Game of 24, demonstrate the superior performance of the OVM model.
arXiv Detail & Related papers (2023-11-16T09:56:28Z) - The Wisdom of Hindsight Makes Language Models Better Instruction
Followers [84.9120606803906]
Reinforcement learning has seen wide success in finetuning large language models to better align with instructions via human feedback.
In this paper, we consider an alternative approach: converting feedback to instruction by relabeling the original one and training the model for better alignment in a supervised manner.
We propose Hindsight Instruction Relabeling (HIR), a novel algorithm for aligning language models with instructions.
arXiv Detail & Related papers (2023-02-10T12:16:38Z) - CostNet: An End-to-End Framework for Goal-Directed Reinforcement
Learning [9.432068833600884]
Reinforcement Learning (RL) is a general framework concerned with an agent that seeks to maximize rewards in an environment.
There are two approaches, model-based and model-free reinforcement learning, that show concrete results in several disciplines.
This paper introduces a novel reinforcement learning algorithm for predicting the distance between two states in a Markov Decision Process.
arXiv Detail & Related papers (2022-10-03T21:16:14Z) - Supervised Advantage Actor-Critic for Recommender Systems [76.7066594130961]
We propose negative sampling strategy for training the RL component and combine it with supervised sequential learning.
Based on sampled (negative) actions (items), we can calculate the "advantage" of a positive action over the average case.
We instantiate SNQN and SA2C with four state-of-the-art sequential recommendation models and conduct experiments on two real-world datasets.
arXiv Detail & Related papers (2021-11-05T12:51:15Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.