MT$^{3}$: Scaling MLLM-based Text Image Machine Translation via Multi-Task Reinforcement Learning
- URL: http://arxiv.org/abs/2505.19714v1
- Date: Mon, 26 May 2025 09:02:35 GMT
- Title: MT$^{3}$: Scaling MLLM-based Text Image Machine Translation via Multi-Task Reinforcement Learning
- Authors: Zhaopeng Feng, Yupu Liang, Shaosheng Cao, Jiayuan Su, Jiahan Ren, Zhe Xu, Yao Hu, Wenxuan Huang, Jian Wu, Zuozhu Liu,
- Abstract summary: We introduce MT$3$, the first framework to apply Multi-Task RL to MLLMs for end-to-end TIMT.<n>It is trained using a novel multi-mixed reward mechanism that adapts rule-based RL strategies to TIMT's intricacies.<n>Our model achieves state-of-the-art results on the latest in-domain MIT-10M benchmark.
- Score: 22.27715186895943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text Image Machine Translation (TIMT)-the task of translating textual content embedded in images-is critical for applications in accessibility, cross-lingual information access, and real-world document understanding. However, TIMT remains a complex challenge due to the need for accurate optical character recognition (OCR), robust visual-text reasoning, and high-quality translation, often requiring cascading multi-stage pipelines. Recent advances in large-scale Reinforcement Learning (RL) have improved reasoning in Large Language Models (LLMs) and Multimodal LLMs (MLLMs), but their application to end-to-end TIMT is still underexplored. To bridge this gap, we introduce MT$^{3}$, the first framework to apply Multi-Task RL to MLLMs for end-to-end TIMT. MT$^{3}$ adopts a multi-task optimization paradigm targeting three key sub-skills: text recognition, context-aware reasoning, and translation. It is trained using a novel multi-mixed reward mechanism that adapts rule-based RL strategies to TIMT's intricacies, offering fine-grained, non-binary feedback across tasks. Furthermore, to facilitate the evaluation of TIMT in authentic cross-cultural and real-world social media contexts, we introduced XHSPost, the first social media TIMT benchmark. Our MT$^{3}$-7B-Zero achieves state-of-the-art results on the latest in-domain MIT-10M benchmark, outperforming strong baselines such as Qwen2.5-VL-72B and InternVL2.5-78B by notable margins across multiple metrics. Additionally, the model shows strong generalization to out-of-distribution language pairs and datasets. In-depth analyses reveal how multi-task synergy, reinforcement learning initialization, curriculum design, and reward formulation contribute to advancing MLLM-driven TIMT.
Related papers
- True Multimodal In-Context Learning Needs Attention to the Visual Context [69.63677595066012]
Multimodal Large Language Models (MLLMs) have enabled Multimodal In-Context Learning (MICL)-adapting to new tasks.<n>Current MLLMs tend to neglect visual cues and over-rely on textual patterns, leading to mere text imitation rather than genuine multimodal adaptation.<n>We introduce Dynamic Attention Reallocation (DARA), an efficient fine-tuning strategy that encourages models to attend to the visual context.
arXiv Detail & Related papers (2025-07-21T17:08:18Z) - InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models [139.19991097260115]
We introduce InternVL3, a significant advancement in the InternVL series featuring a native multimodal pre-training paradigm.<n>In particular, InternVL3-78B achieves a score of 72.2 on the MMMU benchmark, setting a new state-of-the-art among open-source MLLMs.<n>In pursuit of open-science principles, we will publicly release both the training data and model weights to foster further research and development in next-generation MLLMs.
arXiv Detail & Related papers (2025-04-14T17:59:25Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.<n>EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - A Novel Paradigm Boosting Translation Capabilities of Large Language Models [11.537249547487045]
The paper proposes a novel paradigm consisting of three stages: Secondary Pre-training using Extensive Monolingual Data, Continual Pre-training with Interlinear Text Format Documents, and Leveraging Source-Language Consistent Instruction for Supervised Fine-Tuning.
Experimental results conducted using the Llama2 model, particularly on Chinese-Llama2, demonstrate the improved translation capabilities of LLMs.
arXiv Detail & Related papers (2024-03-18T02:53:49Z) - TMT: Tri-Modal Translation between Speech, Image, and Text by Processing
Different Modalities as Different Languages [96.8603701943286]
Tri-Modal Translation (TMT) model translates between arbitrary modalities spanning speech, image, and text.
We tokenize speech and image data into discrete tokens, which provide a unified interface across modalities.
TMT outperforms single model counterparts consistently.
arXiv Detail & Related papers (2024-02-25T07:46:57Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - Exploring Better Text Image Translation with Multimodal Codebook [39.12169843196739]
Text image translation (TIT) aims to translate the source texts embedded in the image to target translations.
In this work, we first annotate a Chinese-English TIT dataset named OCRMT30K, providing convenience for subsequent studies.
Then, we propose a TIT model with a multimodal codebook, which is able to associate the image with relevant texts.
We present a multi-stage training framework involving text machine translation, image-text alignment, and TIT tasks, which fully exploits additional bilingual texts.
arXiv Detail & Related papers (2023-05-27T08:41:18Z) - Beyond Triplet: Leveraging the Most Data for Multimodal Machine
Translation [53.342921374639346]
Multimodal machine translation aims to improve translation quality by incorporating information from other modalities, such as vision.
Previous MMT systems mainly focus on better access and use of visual information and tend to validate their methods on image-related datasets.
This paper establishes new methods and new datasets for MMT.
arXiv Detail & Related papers (2022-12-20T15:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.