Concise Reasoning, Big Gains: Pruning Long Reasoning Trace with Difficulty-Aware Prompting
- URL: http://arxiv.org/abs/2505.19716v1
- Date: Mon, 26 May 2025 09:04:44 GMT
- Title: Concise Reasoning, Big Gains: Pruning Long Reasoning Trace with Difficulty-Aware Prompting
- Authors: Yifan Wu, Jingze Shi, Bingheng Wu, Jiayi Zhang, Xiaotian Lin, Nan Tang, Yuyu Luo,
- Abstract summary: We propose a difficulty-aware prompting (DAP) method to dynamically shorten reasoning traces without performance loss.<n>In experiments, a student model fine-tuned on just 100K of these difficulty-pruned CoT samples outperforms a model distilled on 800K original Long CoT samples.<n>Our method also generalizes well: across 11 diverse benchmarks, the shorter difficulty-aware CoTs achieve equal or better accuracy than Long chains, using far fewer tokens.
- Score: 28.537281448659634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing chain-of-thought (CoT) distillation methods can effectively transfer reasoning abilities to base models but suffer from two major limitations: excessive verbosity of reasoning traces and inadequate adaptability to problem difficulty. Long reasoning traces significantly increase inference costs, and uniform-length solutions prevent base models from learning adaptive reasoning strategies. To address these issues, we propose a difficulty-aware prompting (DAP) method to dynamically shorten reasoning traces without performance loss. In our approach, a large teacher model first judges each problem's difficulty and then rewrites its reasoning traces to an appropriate shorter length, yielding concise yet complete reasoning traces. Leveraging the DAP pipeline, we curate a distilled dataset called LiteCoT consisting of 100K concise reasoning examples, with solutions averaging only 720 tokens (an order of magnitude shorter than typical CoTs). Using LiteCoT, we distilled a new family of reasoning models called Liter (1.5B, 7B, and 32B) based on the Qwen2.5 architecture. Experiments show that a student model fine-tuned on just 100K of these difficulty-pruned CoT samples outperforms a model distilled on 800K original Long CoT samples, while significantly reducing training and inference costs. Our method also generalizes well: across 11 diverse benchmarks, the shorter difficulty-aware CoTs achieve equal or better accuracy than Long chains, using far fewer tokens. For example, on the challenging AIME24 exam, our approach reaches $74.2\%$ Pass@1 using only about 5K inference tokens, surpassing other methods that consume many more tokens. Our code and data are available at https://github.com/Evanwu1125/LiteCoT.
Related papers
- The Challenge of Teaching Reasoning to LLMs Without RL or Distillation [31.973226821366325]
Reasoning-capable language models achieve state-of-the-art performance in diverse complex tasks by generating long, explicit Chain-of-Thought traces.<n>We ask whether long CoT can be induced in a base model using only prompting or minimal tuning.<n>The resulting model outperforms the much larger textttQwen2.5-Math-72B-Instruct, showing that a handful of high-quality examples can unlock strong reasoning capabilities.
arXiv Detail & Related papers (2025-07-14T01:14:50Z) - TL;DR: Too Long, Do Re-weighting for Efficient LLM Reasoning Compression [55.37723860832064]
We propose a dynamic ratio-based training pipeline that does not rely on sophisticated data annotations.<n>We validate our approach across models on DeepSeek-R1-Distill-7B and DeepSeek-R1-Distill-14B and on a diverse set of benchmarks with varying difficulty levels.
arXiv Detail & Related papers (2025-06-03T09:23:41Z) - VeriThinker: Learning to Verify Makes Reasoning Model Efficient [52.74493506816969]
Large Reasoning Models excel at complex tasks using Chain-of-Thought (CoT) reasoning.<n>Their tendency to overthinking leads to unnecessarily lengthy reasoning chains.<n>We introduce VeriThinker, a novel approach for CoT compression.
arXiv Detail & Related papers (2025-05-23T14:17:56Z) - Long Is More Important Than Difficult for Training Reasoning Models [21.369780872368143]
We show that reasoning length, rather than problem difficulty, primarily influences the performance of trained models.<n>We present our model, Long1K-32B, which achieves remarkable performance with only 1,000 training samples.
arXiv Detail & Related papers (2025-03-23T13:33:59Z) - CoT-Valve: Length-Compressible Chain-of-Thought Tuning [50.196317781229496]
We introduce a new tuning and inference strategy named CoT-Valve, designed to allow models to generate reasoning chains of varying lengths.<n>We show that CoT-Valve successfully enables controllability and compressibility of the chain and shows better performance than the prompt-based control.
arXiv Detail & Related papers (2025-02-13T18:52:36Z) - LLMs Can Easily Learn to Reason from Demonstrations Structure, not content, is what matters! [53.84130385074551]
Large reasoning models (LRMs) tackle complex reasoning problems by following long chain-of-thoughts (Long CoT)<n>We find that a Large Language model (LLM) can effectively learn Long CoT reasoning through data-efficient supervised fine-tuning (SFT) and parameter-efficient low-rank adaptation (LoRA)<n>With just 17k long CoT training samples, the Qwen2.5-32B-Instruct model achieves significant improvements on a wide range of math and coding benchmarks.
arXiv Detail & Related papers (2025-02-11T08:48:48Z) - BOLT: Bootstrap Long Chain-of-Thought in Language Models without Distillation [88.77999917897702]
o1 from OpenAI has demonstrated remarkable reasoning capabilities.<n>Many teams have attempted to replicate its LongCoT and reasoning capabilities.<n>This paper introduces a novel approach to enable LLM's LongCoT capacity without distillation from o1-like models or expensive human annotations.
arXiv Detail & Related papers (2025-02-06T08:19:59Z) - O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning [98.3430004984531]
We propose Length-Harmonizing Fine-Tuning (O1-Pruner) to minimize reasoning overhead while maintaining accuracy.<n>Our code is coming soon at https://github.com/StarDewXXX/O1-Pruner.
arXiv Detail & Related papers (2025-01-22T01:35:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.