CoT-Valve: Length-Compressible Chain-of-Thought Tuning
- URL: http://arxiv.org/abs/2502.09601v1
- Date: Thu, 13 Feb 2025 18:52:36 GMT
- Title: CoT-Valve: Length-Compressible Chain-of-Thought Tuning
- Authors: Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, Xinchao Wang,
- Abstract summary: We introduce a new tuning and inference strategy named CoT-Valve, designed to allow models to generate reasoning chains of varying lengths.<n>We show that CoT-Valve successfully enables controllability and compressibility of the chain and shows better performance than the prompt-based control.
- Score: 50.196317781229496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chain-of-Thought significantly enhances a model's reasoning capability, but it also comes with a considerable increase in inference costs due to long chains. With the observation that the reasoning path can be easily compressed under easy tasks but struggle on hard tasks, we explore the feasibility of elastically controlling the length of reasoning paths with only one model, thereby reducing the inference overhead of reasoning models dynamically based on task difficulty. We introduce a new tuning and inference strategy named CoT-Valve, designed to allow models to generate reasoning chains of varying lengths. To achieve this, we propose to identify a direction in the parameter space that, when manipulated, can effectively control the length of generated CoT. Moreover, we show that this property is valuable for compressing the reasoning chain. We construct datasets with chains from long to short for the same questions and explore two enhanced strategies for CoT-Valve: (1) a precise length-compressible CoT tuning method, and (2) a progressive chain length compression approach. Our experiments show that CoT-Valve successfully enables controllability and compressibility of the chain and shows better performance than the prompt-based control. We applied this method to QwQ-32B-Preview, reducing reasoning chains on GSM8K from 741 to 225 tokens with a minor performance drop (95.07% to 94.92%) and on AIME from 6827 to 4629 tokens, with only one additional incorrect answer.
Related papers
- R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning [60.37610817226533]
Chain-of-thought (CoT) reasoning encourages step-by-step intermediate reasoning during inference.<n>CoT introduces substantial computational overhead due to its reliance on autoregressive decoding over long token sequences.<n>We present R-Stitch, a token-level, confidence-based hybrid decoding framework that accelerates CoT inference.
arXiv Detail & Related papers (2025-07-23T08:14:36Z) - The Challenge of Teaching Reasoning to LLMs Without RL or Distillation [31.973226821366325]
Reasoning-capable language models achieve state-of-the-art performance in diverse complex tasks by generating long, explicit Chain-of-Thought traces.<n>We ask whether long CoT can be induced in a base model using only prompting or minimal tuning.<n>The resulting model outperforms the much larger textttQwen2.5-Math-72B-Instruct, showing that a handful of high-quality examples can unlock strong reasoning capabilities.
arXiv Detail & Related papers (2025-07-14T01:14:50Z) - ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation [53.149817480019834]
Recent advancements in large reasoning models (LRMs) have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT)<n>We propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint during the token generation of the reasoning process.<n>Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well.
arXiv Detail & Related papers (2025-06-23T16:20:44Z) - Fractional Reasoning via Latent Steering Vectors Improves Inference Time Compute [57.16286134405821]
We propose Fractional Reasoning, a framework that enables continuous control over reasoning intensity at inference time.<n>Our method operates by extracting the latent steering vector associated with deeper reasoning and reapplying it with a tunable scaling factor.<n> Experiments on GSM8K, MATH500, and GPQA demonstrate that Fractional Reasoning consistently improves performance across diverse reasoning tasks and models.
arXiv Detail & Related papers (2025-06-18T21:15:59Z) - Prompting Science Report 2: The Decreasing Value of Chain of Thought in Prompting [0.0]
Chain-of-Thought (CoT) prompting is a technique that encourages a large language model to "think step by step"<n>The effectiveness of CoT prompting can vary greatly depending on the type of task and model.<n>For models designed with explicit reasoning capabilities, CoT prompting often results in only marginal, if any, gains in answer accuracy.
arXiv Detail & Related papers (2025-06-08T13:41:25Z) - Adaptive Deep Reasoning: Triggering Deep Thinking When Needed [28.575411507835973]
Large language models (LLMs) have shown impressive capabilities in handling complex tasks through long-chain reasoning.<n>We propose a novel approach that autonomously switches between short and long-chain reasoning chains based on problem complexity.<n>This advancement enhances the practicality of reasoning in large language models for real-world applications.
arXiv Detail & Related papers (2025-05-26T15:08:51Z) - Concise Reasoning, Big Gains: Pruning Long Reasoning Trace with Difficulty-Aware Prompting [28.537281448659634]
We propose a difficulty-aware prompting (DAP) method to dynamically shorten reasoning traces without performance loss.<n>In experiments, a student model fine-tuned on just 100K of these difficulty-pruned CoT samples outperforms a model distilled on 800K original Long CoT samples.<n>Our method also generalizes well: across 11 diverse benchmarks, the shorter difficulty-aware CoTs achieve equal or better accuracy than Long chains, using far fewer tokens.
arXiv Detail & Related papers (2025-05-26T09:04:44Z) - Fractured Chain-of-Thought Reasoning [61.647243580650446]
We introduce Fractured Sampling, a unified inference-time strategy that interpolates between full CoT and solution-only sampling.<n>We show that Fractured Sampling consistently achieves superior accuracy-cost trade-offs, yielding steep log-linear scaling gains in Pass@k versus token budget.
arXiv Detail & Related papers (2025-05-19T11:30:41Z) - How Well do LLMs Compress Their Own Chain-of-Thought? A Token Complexity Approach [4.055489363682199]
We conduct the first systematic study of the relationship between reasoning length and model performance.
We show that this tradeoff persists across even very distinct reasoning chains.
We show that prompt-based compression strategies operate far from theoretical limits.
arXiv Detail & Related papers (2025-03-03T03:48:20Z) - Unveiling Reasoning Thresholds in Language Models: Scaling, Fine-Tuning, and Interpretability through Attention Maps [3.8936716676293917]
This study investigates the in-context learning capabilities of various decoder-only transformer-based language models with different model sizes and training data.
We identify a critical parameter threshold (1.6 billion), beyond which reasoning performance improves significantly in tasks such as commonsense reasoning in multiple-choice question answering and deductive reasoning.
arXiv Detail & Related papers (2025-02-21T00:48:32Z) - TokenSkip: Controllable Chain-of-Thought Compression in LLMs [11.583847083770031]
Chain-of-Thought (CoT) has been proven effective in enhancing the reasoning capabilities of large language models (LLMs)
We propose TokenSkip, a simple yet effective approach that enables LLMs to selectively skip less important tokens, allowing for controllable CoT compression.
arXiv Detail & Related papers (2025-02-17T17:37:26Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [53.77747102201451]
Chain-of-thought (CoT) reasoning enhances the multi-step reasoning capabilities of large language models (LLMs)<n>However, for most models and tasks, does an increase in CoT length consistently lead to improved reasoning accuracy?<n>In this paper, we observe a nuanced relationship: as the number of reasoning steps increases, performance initially improves but eventually decreases.
arXiv Detail & Related papers (2025-02-11T05:28:59Z) - C3oT: Generating Shorter Chain-of-Thought without Compromising Effectiveness [18.073777359647515]
Chain-of-Thought (CoT) before deriving the answer can improve the reasoning capabilities of large language models (LLMs)<n>However, the length of the generated CoT is much longer than the desired final answer, which results in additional decoding costs.<n>This paper presents a CoT compression framework that involves a compressor to compress an original longer CoT into a shorter CoT.
arXiv Detail & Related papers (2024-12-16T11:12:45Z) - Training Nonlinear Transformers for Chain-of-Thought Inference: A Theoretical Generalization Analysis [82.51626700527837]
Chain-of-shift (CoT) is an efficient method that enables the reasoning ability of large language models by augmenting the query using examples with multiple intermediate steps.
We show that despite the theoretical success of CoT, it fails to provide an accurate generalization when CoT does.
arXiv Detail & Related papers (2024-10-03T03:12:51Z) - A Hopfieldian View-based Interpretation for Chain-of-Thought Reasoning [48.51969964676017]
Chain-of-Thought (CoT) holds a significant place in augmenting the reasoning performance for large language models.
We propose a Read-and-Control approach for controlling the accuracy of CoT.
arXiv Detail & Related papers (2024-06-18T04:07:13Z) - Mitigating Misleading Chain-of-Thought Reasoning with Selective Filtering [59.495717939664246]
Large language models have manifested remarkable capabilities by leveraging chain-of-thought (CoT) reasoning techniques to solve intricate questions.
We propose a novel approach called the selective filtering reasoner (SelF-Reasoner) that assesses the entailment relationship between the question and the candidate reasoning chain.
SelF-Reasoner improves the fine-tuned T5 baseline consistently over the ScienceQA, ECQA, and LastLetter tasks.
arXiv Detail & Related papers (2024-03-28T06:28:35Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
Chain-of-Thought (CoT) prompting can enhance the reasoning capabilities of large language models (LLMs)
Existing CoT approaches usually focus on simpler reasoning tasks and thus result in low-quality and inconsistent CoT prompts.
We introduce CoTGenius, a novel framework designed for the automatic generation of superior CoT prompts.
arXiv Detail & Related papers (2024-03-21T11:34:26Z) - Training Chain-of-Thought via Latent-Variable Inference [30.21067593018967]
Large language models (LLMs) solve problems more accurately and interpretably when instructed to work out the answer step by step using a chain-of-thought'' prompt.
Naively combining CoT with supervised tuning requires supervision not just of the correct answers, but also of detailed rationales that lead to those answers.
We propose a fine-tuning strategy that tries to maximize the emphmarginal log-likelihood of generating a correct answer using CoT prompting.
arXiv Detail & Related papers (2023-11-28T17:47:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.