Discrete Markov Bridge
- URL: http://arxiv.org/abs/2505.19752v1
- Date: Mon, 26 May 2025 09:32:12 GMT
- Title: Discrete Markov Bridge
- Authors: Hengli Li, Yuxuan Wang, Song-Chun Zhu, Ying Nian Wu, Zilong Zheng,
- Abstract summary: We propose a novel framework specifically designed for discrete representation learning, called Discrete Markov Bridge.<n>Our approach is built upon two key components: Matrix Learning and Score Learning.
- Score: 93.64996843697278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discrete diffusion has recently emerged as a promising paradigm in discrete data modeling. However, existing methods typically rely on a fixed rate transition matrix during training, which not only limits the expressiveness of latent representations, a fundamental strength of variational methods, but also constrains the overall design space. To address these limitations, we propose Discrete Markov Bridge, a novel framework specifically designed for discrete representation learning. Our approach is built upon two key components: Matrix Learning and Score Learning. We conduct a rigorous theoretical analysis, establishing formal performance guarantees for Matrix Learning and proving the convergence of the overall framework. Furthermore, we analyze the space complexity of our method, addressing practical constraints identified in prior studies. Extensive empirical evaluations validate the effectiveness of the proposed Discrete Markov Bridge, which achieves an Evidence Lower Bound (ELBO) of 1.38 on the Text8 dataset, outperforming established baselines. Moreover, the proposed model demonstrates competitive performance on the CIFAR-10 dataset, achieving results comparable to those obtained by image-specific generation approaches.
Related papers
- Relative Overfitting and Accept-Reject Framework [5.465098504510676]
We propose an ensemble framework that governs how models are segmented to ensure performance improvement.<n>We detail the patterns of this framework within the domain of NLP and briefly describe its to other fields, such as computer vision (CV) and AI for science.
arXiv Detail & Related papers (2025-05-12T17:36:14Z) - A Survey of Low-shot Vision-Language Model Adaptation via Representer Theorem [38.84662767814454]
Key challenge to address under the condition of limited training data is how to fine-tune pre-trained vision-language models in a parameter-efficient manner.
This paper proposes a unified computational framework to integrate existing methods together, identify their nature and support in-depth comparison.
As a demonstration, we extend existing methods by modeling inter-class correlation between representers in reproducing kernel Hilbert space (RKHS)
arXiv Detail & Related papers (2024-10-15T15:22:30Z) - Preference-Based Multi-Agent Reinforcement Learning: Data Coverage and Algorithmic Techniques [65.55451717632317]
We study Preference-Based Multi-Agent Reinforcement Learning (PbMARL)<n>We identify the Nash equilibrium from a preference-only offline dataset in general-sum games.<n>Our findings underscore the multifaceted approach required for PbMARL.
arXiv Detail & Related papers (2024-09-01T13:14:41Z) - Bayesian Exploration of Pre-trained Models for Low-shot Image Classification [14.211305168954594]
This work proposes a simple and effective probabilistic model ensemble framework based on Gaussian processes.
We achieve the integration of prior knowledge by specifying the mean function with CLIP and the kernel function.
We demonstrate that our method consistently outperforms competitive ensemble baselines regarding predictive performance.
arXiv Detail & Related papers (2024-03-30T10:25:28Z) - Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification [72.77513633290056]
We present a novel approach that combines the eigenanalysis of a covariance matrix evaluated on a training set with a Hessian matrix evaluated on a deep learning model.
Our method captures intricate patterns and relationships, enhancing classification performance.
arXiv Detail & Related papers (2024-02-14T16:10:42Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
We argue that the key to better performance lies in meaningful latent modality structures instead of perfect modality alignment.
Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization.
arXiv Detail & Related papers (2023-03-10T14:38:49Z) - Let us Build Bridges: Understanding and Extending Diffusion Generative
Models [19.517597928769042]
Diffusion-based generative models have achieved promising results recently, but raise an array of open questions.
This work tries to re-exam the overall framework in order to gain better theoretical understandings.
We present 1) a first theoretical error analysis for learning diffusion generation models, and 2) a simple and unified approach to learning on data from different discrete and constrained domains.
arXiv Detail & Related papers (2022-08-31T08:58:10Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
It is common to address the curse of dimensionality in Markov decision processes (MDPs) by exploiting low-rank representations.
We consider an alternative definition of linear MDPs that automatically ensures normalization while allowing efficient representation learning.
We demonstrate superior performance over existing state-of-the-art model-based and model-free algorithms on several benchmarks.
arXiv Detail & Related papers (2022-07-14T18:18:02Z) - Efficient Performance Bounds for Primal-Dual Reinforcement Learning from
Demonstrations [1.0609815608017066]
We consider large-scale Markov decision processes with an unknown cost function and address the problem of learning a policy from a finite set of expert demonstrations.
Existing inverse reinforcement learning methods come with strong theoretical guarantees, but are computationally expensive.
We introduce a novel bilinear saddle-point framework using Lagrangian duality to bridge the gap between theory and practice.
arXiv Detail & Related papers (2021-12-28T05:47:24Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.