Agentic Predictor: Performance Prediction for Agentic Workflows via Multi-View Encoding
- URL: http://arxiv.org/abs/2505.19764v1
- Date: Mon, 26 May 2025 09:46:50 GMT
- Title: Agentic Predictor: Performance Prediction for Agentic Workflows via Multi-View Encoding
- Authors: Patara Trirat, Wonyong Jeong, Sung Ju Hwang,
- Abstract summary: Agentic Predictor is a lightweight predictor for efficient agentic workflow evaluation.<n>By learning to approximate task success rates, Agentic Predictor enables fast and accurate selection of optimal agentic workflow configurations.
- Score: 56.565200973244146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks, but optimizing LLM-based agentic systems remains challenging due to the vast search space of agent configurations, prompting strategies, and communication patterns. Existing approaches often rely on heuristic-based tuning or exhaustive evaluation, which can be computationally expensive and suboptimal. This paper proposes Agentic Predictor, a lightweight predictor for efficient agentic workflow evaluation. Agentic Predictor is equipped with a multi-view workflow encoding technique that leverages multi-view representation learning of agentic systems by incorporating code architecture, textual prompts, and interaction graph features. To achieve high predictive accuracy while significantly reducing the number of required workflow evaluations for training a predictor, Agentic Predictor employs cross-domain unsupervised pretraining. By learning to approximate task success rates, Agentic Predictor enables fast and accurate selection of optimal agentic workflow configurations for a given task, significantly reducing the need for expensive trial-and-error evaluations. Experiments on a carefully curated benchmark spanning three domains show that our predictor outperforms state-of-the-art methods in both predictive accuracy and workflow utility, highlighting the potential of performance predictors in streamlining the design of LLM-based agentic workflows.
Related papers
- AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search [58.98450205734779]
Large language model (LLM) agents have demonstrated strong capabilities across diverse domains.<n>Existing agent search methods suffer from three major limitations.<n>We introduce a comprehensive framework to address these challenges.
arXiv Detail & Related papers (2025-06-06T12:07:23Z) - GNNs as Predictors of Agentic Workflow Performances [48.34485750450876]
Agentic invoked by Large Language Models (LLMs) have achieved remarkable success in handling complex tasks.<n>This paper formulates agentic as computational graphs and advocates Graph Neural Networks (GNNs) as efficient predictors of agentic performances.<n>We construct FLORA-Bench, a unified platform for benchmarking GNNs for predicting agentic workflow performances.
arXiv Detail & Related papers (2025-03-14T11:11:00Z) - Unveiling Downstream Performance Scaling of LLMs: A Clustering-Based Perspective [5.09611816929943]
The escalating scale and cost of Large Language Models (LLMs) training necessitate accurate pre-training prediction of downstream task performance.<n>Current prediction methods lack accuracy and reliability.<n>We propose a Clustering-On-Difficulty (COD) framework for downstream performance prediction.
arXiv Detail & Related papers (2025-02-24T15:44:57Z) - Towards more Contextual Agents: An extractor-Generator Optimization Framework [0.0]
Large Language Model (LLM)-based agents have demonstrated remarkable success in solving complex tasks across a wide range of general-purpose applications.<n>However, their performance often degrades in context-specific scenarios, such as specialized industries or research domains.<n>To address this challenge, our work introduces a systematic approach to enhance the contextual adaptability of LLM-based agents.
arXiv Detail & Related papers (2025-02-18T15:07:06Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorfBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.<n>We also present WorfEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.<n>We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
Large language models (LLMs) have achieved great success across diverse tasks, and fine-tuning is sometimes needed to further enhance generation quality.<n>To handle these challenges, a direct solution is to generate high-confidence'' data from unsupervised downstream tasks.<n>We propose a novel approach, pseudo-supervised demonstrations aligned prompt optimization (PAPO) algorithm, which jointly refines both the prompt and the overall pseudo-supervision.
arXiv Detail & Related papers (2024-10-04T03:39:28Z) - Self-Supervised Learning via Maximum Entropy Coding [57.56570417545023]
We propose Maximum Entropy Coding (MEC) as a principled objective that explicitly optimize on the structure of the representation.
MEC learns a more generalizable representation than previous methods based on specific pretext tasks.
It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking.
arXiv Detail & Related papers (2022-10-20T17:58:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.