AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search
- URL: http://arxiv.org/abs/2506.06017v1
- Date: Fri, 06 Jun 2025 12:07:23 GMT
- Title: AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search
- Authors: Yu Li, Lehui Li, Zhihao Wu, Qingmin Liao, Jianye Hao, Kun Shao, Fengli Xu, Yong Li,
- Abstract summary: Large language model (LLM) agents have demonstrated strong capabilities across diverse domains.<n>Existing agent search methods suffer from three major limitations.<n>We introduce a comprehensive framework to address these challenges.
- Score: 58.98450205734779
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model (LLM) agents have demonstrated strong capabilities across diverse domains. However, designing high-performing agentic systems remains challenging. Existing agent search methods suffer from three major limitations: (1) an emphasis on optimizing agentic workflows while under-utilizing proven human-designed components such as memory, planning, and tool use; (2) high evaluation costs, as each newly generated agent must be fully evaluated on benchmarks; and (3) inefficient search in large search space. In this work, we introduce a comprehensive framework to address these challenges. First, We propose a hierarchical search space that jointly models agentic workflow and composable functional components, enabling richer agentic system designs. Building on this structured design space, we introduce a predictive value model that estimates agent performance given agentic system and task description, allowing for efficient, low-cost evaluation during the search process. Finally, we present a hierarchical Monte Carlo Tree Search (MCTS) strategy informed by uncertainty to guide the search. Experiments on seven benchmarks, covering embodied, math, web, tool, and game, show that our method achieves an average performance gain of 8.34\% over state-of-the-art baselines and exhibits faster search progress with steeper improvement trajectories. Code repo is available at https://github.com/Ericccc02/AgentSwift.
Related papers
- Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling [83.78874399606379]
We propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling.<n>It comprises four distinct small-scale agents, with clearly defined roles and effective collaboration.<n>It shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks.
arXiv Detail & Related papers (2025-08-05T12:52:09Z) - MMSearch-R1: Incentivizing LMMs to Search [49.889749277236376]
We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables on-demand, multi-turn search in real-world Internet environments.<n>Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty.
arXiv Detail & Related papers (2025-06-25T17:59:42Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - Unifying Language Agent Algorithms with Graph-based Orchestration Engine for Reproducible Agent Research [32.92036657863354]
Language agents powered by large language models (LLMs) have demonstrated remarkable capabilities in understanding, reasoning, and executing complex tasks.<n>However, developing robust agents presents significant challenges: substantial engineering overhead, lack of standardized components, and insufficient evaluation frameworks for fair comparison.<n>We introduce Agent Graph-based Orchestration for Reasoning and Assessment (AGORA), a flexible and abstraction framework that addresses these challenges.
arXiv Detail & Related papers (2025-05-30T08:46:23Z) - Agentic Predictor: Performance Prediction for Agentic Workflows via Multi-View Encoding [56.565200973244146]
Agentic Predictor is a lightweight predictor for efficient agentic workflow evaluation.<n>By learning to approximate task success rates, Agentic Predictor enables fast and accurate selection of optimal agentic workflow configurations.
arXiv Detail & Related papers (2025-05-26T09:46:50Z) - Demystifying and Enhancing the Efficiency of Large Language Model Based Search Agents [9.862334188345791]
Large Language Model (LLM)-based search agents have shown remarkable capabilities in solving complex tasks.<n>We introduce SearchAgent-X, a high-efficiency inference framework for LLM-based search agents.<n>SearchAgent-X consistently outperforms state-of-the-art systems such as vLLM and HNSW-based retrieval.
arXiv Detail & Related papers (2025-05-17T16:07:01Z) - RAG-Gym: Systematic Optimization of Language Agents for Retrieval-Augmented Generation [43.50113345998687]
We introduce RAG-Gym, a comprehensive platform that explores three optimization dimensions: (1) prompt engineering, (2) actor tuning, and (3) critic training.<n>For prompt engineering, we propose Re$2$Search, a novel agent incorporating reflection reasoning that significantly outperforms standard prompts.<n>In actor tuning, we evaluate three popular post-training algorithms with fine-grained process supervision and identify direct preference optimization as the most effective.
arXiv Detail & Related papers (2025-02-19T18:56:03Z) - AgentSquare: Automatic LLM Agent Search in Modular Design Space [16.659969168343082]
Large Language Models (LLMs) have led to a rapid growth of agentic systems capable of handling a wide range of complex tasks.<n>We introduce a new research problem: Modularized LLM Agent Search (MoLAS)
arXiv Detail & Related papers (2024-10-08T15:52:42Z) - Tree Search for Language Model Agents [69.43007235771383]
We propose an inference-time search algorithm for LM agents to perform exploration and multi-step planning in interactive web environments.
Our approach is a form of best-first tree search that operates within the actual environment space.
It is the first tree search algorithm for LM agents that shows effectiveness on realistic web tasks.
arXiv Detail & Related papers (2024-07-01T17:07:55Z) - AgentQuest: A Modular Benchmark Framework to Measure Progress and Improve LLM Agents [19.439775106707344]
AgentQuest is a framework where benchmarks and metrics are modular and easily through well documented and easy-to-use APIs.
We offer two new evaluation metrics that can reliably track LLM agent progress while solving a task.
We exemplify the utility of the metrics on two use cases wherein we identify common failure points and refine the agent architecture to obtain a significant performance increase.
arXiv Detail & Related papers (2024-04-09T16:01:24Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agent is designed to enhance the capabilities of Large Language Models (LLMs) in task-solving.
Our framework includes two novel modules: hierarchical Objects and Key Results generation and multi-level evaluation.
arXiv Detail & Related papers (2023-11-28T06:16:30Z) - MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation [96.71370747681078]
We introduce MLAgentBench, a suite of 13 tasks ranging from improving model performance on CIFAR-10 to recent research problems like BabyLM.
For each task, an agent can perform actions like reading/writing files, executing code, and inspecting outputs.
We benchmark agents based on Claude v1.0, Claude v2.1, Claude v3 Opus, GPT-4, GPT-4-turbo, Gemini-Pro, and Mixtral and find that a Claude v3 Opus agent is the best in terms of success rate.
arXiv Detail & Related papers (2023-10-05T04:06:12Z) - AutoRC: Improving BERT Based Relation Classification Models via
Architecture Search [50.349407334562045]
BERT based relation classification (RC) models have achieved significant improvements over the traditional deep learning models.
No consensus can be reached on what is the optimal architecture.
We design a comprehensive search space for BERT based RC models and employ neural architecture search (NAS) method to automatically discover the design choices.
arXiv Detail & Related papers (2020-09-22T16:55:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.