Types of Relations: Defining Analogies with Category Theory
- URL: http://arxiv.org/abs/2505.19792v1
- Date: Mon, 26 May 2025 10:22:44 GMT
- Title: Types of Relations: Defining Analogies with Category Theory
- Authors: Claire Ott, Frank Jäkel,
- Abstract summary: In this paper, we study features of a domain that are important for constructing analogies.<n>We do so by formalizing knowledge domains as categories.<n>We also show how functors, pullbacks, and pushouts can be used to define an analogy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order to behave intelligently both humans and machines have to represent their knowledge adequately for how it is used. Humans often use analogies to transfer their knowledge to new domains, or help others with this transfer via explanations. Hence, an important question is: What representation can be used to construct, find, and evaluate analogies? In this paper, we study features of a domain that are important for constructing analogies. We do so by formalizing knowledge domains as categories. We use the well-known example of the analogy between the solar system and the hydrogen atom to demonstrate how to construct domain categories. We also show how functors, pullbacks, and pushouts can be used to define an analogy, describe its core and a corresponding blend of the underlying domains.
Related papers
- Can Large Language Models generalize analogy solving like people can? [46.02074643846298]
In people, the ability to solve analogies such as "body : feet :: table :?" emerges in childhood.<n>Recent research shows that large language models (LLMs) can solve various forms of analogies.
arXiv Detail & Related papers (2024-11-04T18:18:38Z) - A Complexity-Based Theory of Compositionality [53.025566128892066]
In AI, compositional representations can enable a powerful form of out-of-distribution generalization.<n>Here, we propose a definition, which we call representational compositionality, that accounts for and extends our intuitions about compositionality.<n>We show how it unifies disparate intuitions from across the literature in both AI and cognitive science.
arXiv Detail & Related papers (2024-10-18T18:37:27Z) - StoryAnalogy: Deriving Story-level Analogies from Large Language Models
to Unlock Analogical Understanding [72.38872974837462]
We evaluate the ability to identify and generate analogies by constructing a first-of-its-kind large-scale story-level analogy corpus.
textscStory Analogy contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory.
We observe that the data in textscStory Analogy can improve the quality of analogy generation in large language models.
arXiv Detail & Related papers (2023-10-19T16:29:23Z) - ARN: Analogical Reasoning on Narratives [13.707344123755126]
We develop a framework that operationalizes dominant theories of analogy, using narrative elements to create surface and system mappings.
We show that while all LLMs can largely recognize near analogies, even the largest ones struggle with far analogies in a zero-shot setting.
arXiv Detail & Related papers (2023-10-02T08:58:29Z) - Why Do We Need Neuro-symbolic AI to Model Pragmatic Analogies? [6.8107181513711055]
A hallmark of intelligence is the ability to use a familiar domain to make inferences about a less familiar domain, known as analogical reasoning.
We discuss analogies at four distinct levels of complexity: lexical analogies, syntactic analogies, semantic analogies, and pragmatic analogies.
We employ Neuro-symbolic AI techniques that combine statistical and symbolic AI, informing the representation of unstructured text to highlight and augment relevant content, provide abstraction and guide the mapping process.
arXiv Detail & Related papers (2023-08-02T21:13:38Z) - Beneath Surface Similarity: Large Language Models Make Reasonable
Scientific Analogies after Structure Abduction [46.2032673640788]
The vital role of analogical reasoning in human cognition allows us to grasp novel concepts by linking them with familiar ones through shared relational structures.
This work suggests that Large Language Models (LLMs) often overlook the structures that underpin these analogies.
This paper introduces a task of analogical structure abduction, grounded in cognitive psychology, designed to abduce structures that form an analogy between two systems.
arXiv Detail & Related papers (2023-05-22T03:04:06Z) - ANALOGYKB: Unlocking Analogical Reasoning of Language Models with A Million-scale Knowledge Base [51.777618249271725]
ANALOGYKB is a million-scale analogy knowledge base derived from existing knowledge graphs (KGs)
It identifies two types of analogies from the KGs: 1) analogies of the same relations, which can be directly extracted from the KGs, and 2) analogies of analogous relations, which are identified with a selection and filtering pipeline enabled by large language models (LLMs)
arXiv Detail & Related papers (2023-05-10T09:03:01Z) - Galois theory for analogical classifiers [1.7132914341329848]
Analogical proportions are 4-ary relations that read "A is to B as C is to D"
Recent works have highlighted the fact that such relations can support a specific form of inference, called analogical inference.
arXiv Detail & Related papers (2022-05-09T23:03:56Z) - Quantifying and Understanding Adversarial Examples in Discrete Input
Spaces [70.18815080530801]
We formalize a notion of synonymous adversarial examples that applies in any discrete setting and describe a simple domain-agnostic algorithm to construct such examples.
Our work is a step towards a domain-agnostic treatment of discrete adversarial examples analogous to that of continuous inputs.
arXiv Detail & Related papers (2021-12-12T16:44:09Z) - A Description Logic for Analogical Reasoning [28.259681405091666]
We present a mechanism to infer plausible missing knowledge, which relies on reasoning by analogy.
This is the first paper that studies analog reasoning within the setting of description logic.
arXiv Detail & Related papers (2021-05-10T19:06:07Z) - Learning to See Analogies: A Connectionist Exploration [0.0]
This dissertation explores the integration of learning and analogy-making through the development of a computer program, called Analogator.
By "seeing" many different analogy problems, along with possible solutions, Analogator gradually develops an ability to make new analogies.
arXiv Detail & Related papers (2020-01-18T14:06:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.