A Regularization-Guided Equivariant Approach for Image Restoration
- URL: http://arxiv.org/abs/2505.19799v1
- Date: Mon, 26 May 2025 10:30:26 GMT
- Title: A Regularization-Guided Equivariant Approach for Image Restoration
- Authors: Yulu Bai, Jiahong Fu, Qi Xie, Deyu Meng,
- Abstract summary: Equivariant and invariant deep learning models have been developed to exploit intrinsic symmetries in data.<n>These methods often suffer from limited representation accuracy and rely on strict symmetry assumptions that may not hold in practice.<n>We propose a rotation-equivariant regularization strategy that adaptively enforces the appropriate symmetry constraints on the data while preserving the network's representational accuracy.
- Score: 46.44312175792672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Equivariant and invariant deep learning models have been developed to exploit intrinsic symmetries in data, demonstrating significant effectiveness in certain scenarios. However, these methods often suffer from limited representation accuracy and rely on strict symmetry assumptions that may not hold in practice. These limitations pose a significant drawback for image restoration tasks, which demands high accuracy and precise symmetry representation. To address these challenges, we propose a rotation-equivariant regularization strategy that adaptively enforces the appropriate symmetry constraints on the data while preserving the network's representational accuracy. Specifically, we introduce EQ-Reg, a regularizer designed to enhance rotation equivariance, which innovatively extends the insights of data-augmentation-based and equivariant-based methodologies. This is achieved through self-supervised learning and the spatial rotation and cyclic channel shift of feature maps deduce in the equivariant framework. Our approach firstly enables a non-strictly equivariant network suitable for image restoration, providing a simple and adaptive mechanism for adjusting equivariance based on task. Extensive experiments across three low-level tasks demonstrate the superior accuracy and generalization capability of our method, outperforming state-of-the-art approaches.
Related papers
- Rotation Equivariant Arbitrary-scale Image Super-Resolution [62.41329042683779]
The arbitrary-scale image super-resolution (ASISR) aims to achieve arbitrary-scale high-resolution recoveries from a low-resolution input image.<n>We make efforts to construct a rotation equivariant ASISR method in this study.
arXiv Detail & Related papers (2025-08-07T08:51:03Z) - Learning (Approximately) Equivariant Networks via Constrained Optimization [25.51476313302483]
Equivariant neural networks are designed to respect symmetries through their architecture.<n>Real-world data often departs from perfect symmetry because of noise, structural variation, measurement bias, or other symmetry-breaking effects.<n>We introduce Adaptive Constrained Equivariance (ACE), a constrained optimization approach that starts with a flexible, non-equivariant model.
arXiv Detail & Related papers (2025-05-19T18:08:09Z) - Improving Equivariant Networks with Probabilistic Symmetry Breaking [9.164167226137664]
Equivariant networks encode known symmetries into neural networks, often enhancing generalizations.<n>This poses an important problem, both (1) for prediction tasks on domains where self-symmetries are common, and (2) for generative models, which must break symmetries in order to reconstruct from highly symmetric latent spaces.<n>We present novel theoretical results that establish sufficient conditions for representing such distributions.
arXiv Detail & Related papers (2025-03-27T21:04:49Z) - PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE enhances global feature representation of point cloud masked autoencoders by making them both discriminative and sensitive to transformations.<n>We propose a novel loss that explicitly penalizes invariant collapse, enabling the network to capture richer transformation cues while preserving discriminative representations.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - Improving Equivariant Model Training via Constraint Relaxation [31.507956579770088]
We propose a novel framework for improving the optimization of such models by relaxing the hard equivariance constraint during training.<n>We provide experimental results on different state-of-the-art network architectures, demonstrating how this training framework can result in equivariant models with improved generalization performance.
arXiv Detail & Related papers (2024-08-23T17:35:08Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Function-Space Regularization in Neural Networks: A Probabilistic
Perspective [51.133793272222874]
We show that we can derive a well-motivated regularization technique that allows explicitly encoding information about desired predictive functions into neural network training.
We evaluate the utility of this regularization technique empirically and demonstrate that the proposed method leads to near-perfect semantic shift detection and highly-calibrated predictive uncertainty estimates.
arXiv Detail & Related papers (2023-12-28T17:50:56Z) - Learning Layer-wise Equivariances Automatically using Gradients [66.81218780702125]
Convolutions encode equivariance symmetries into neural networks leading to better generalisation performance.
symmetries provide fixed hard constraints on the functions a network can represent, need to be specified in advance, and can not be adapted.
Our goal is to allow flexible symmetry constraints that can automatically be learned from data using gradients.
arXiv Detail & Related papers (2023-10-09T20:22:43Z) - Learning Symmetric Embeddings for Equivariant World Models [9.781637768189158]
We propose learning symmetric embedding networks (SENs) that encode an input space (e.g. images)
This network can be trained end-to-end with an equivariant task network to learn an explicitly symmetric representation.
Our experiments demonstrate that SENs facilitate the application of equivariant networks to data with complex symmetry representations.
arXiv Detail & Related papers (2022-04-24T22:31:52Z) - Leveraging Equivariant Features for Absolute Pose Regression [9.30597356471664]
We show that a translation and rotation equivariant Convolutional Neural Network directly induces representations of camera motions into the feature space.
We then show that this geometric property allows for implicitly augmenting the training data under a whole group of image plane-preserving transformations.
arXiv Detail & Related papers (2022-04-05T12:44:20Z) - Deformation Robust Roto-Scale-Translation Equivariant CNNs [10.44236628142169]
Group-equivariant convolutional neural networks (G-CNNs) achieve significantly improved generalization performance with intrinsic symmetry.
General theory and practical implementation of G-CNNs have been studied for planar images under either rotation or scaling transformation.
arXiv Detail & Related papers (2021-11-22T03:58:24Z) - Self-supervised Augmentation Consistency for Adapting Semantic
Segmentation [56.91850268635183]
We propose an approach to domain adaptation for semantic segmentation that is both practical and highly accurate.
We employ standard data augmentation techniques $-$ photometric noise, flipping and scaling $-$ and ensure consistency of the semantic predictions.
We achieve significant improvements of the state-of-the-art segmentation accuracy after adaptation, consistent both across different choices of the backbone architecture and adaptation scenarios.
arXiv Detail & Related papers (2021-04-30T21:32:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.