論文の概要: CPA-RAG:Covert Poisoning Attacks on Retrieval-Augmented Generation in Large Language Models
- arxiv url: http://arxiv.org/abs/2505.19864v1
- Date: Mon, 26 May 2025 11:48:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.398566
- Title: CPA-RAG:Covert Poisoning Attacks on Retrieval-Augmented Generation in Large Language Models
- Title(参考訳): CPA-RAG:大規模言語モデルにおける検索強化生成に対する共犯攻撃
- Authors: Chunyang Li, Junwei Zhang, Anda Cheng, Zhuo Ma, Xinghua Li, Jianfeng Ma,
- Abstract要約: Retrieval-Augmented Generation (RAG)は、外部知識を取り入れた大規模言語モデル(LLM)を強化する。
既存のRAGシステムに対する中毒法には、一般化の欠如や、敵のテキストにおける流布の欠如など、制限がある。
CPA-RAGは,検索プロセスを操作することで,対象の回答を誘導するクエリ関連テキストを生成するブラックボックスの対向フレームワークである。
- 参考スコア(独自算出の注目度): 15.349703228157479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by incorporating external knowledge, but its openness introduces vulnerabilities that can be exploited by poisoning attacks. Existing poisoning methods for RAG systems have limitations, such as poor generalization and lack of fluency in adversarial texts. In this paper, we propose CPA-RAG, a black-box adversarial framework that generates query-relevant texts capable of manipulating the retrieval process to induce target answers. The proposed method integrates prompt-based text generation, cross-guided optimization through multiple LLMs, and retriever-based scoring to construct high-quality adversarial samples. We conduct extensive experiments across multiple datasets and LLMs to evaluate its effectiveness. Results show that the framework achieves over 90\% attack success when the top-k retrieval setting is 5, matching white-box performance, and maintains a consistent advantage of approximately 5 percentage points across different top-k values. It also outperforms existing black-box baselines by 14.5 percentage points under various defense strategies. Furthermore, our method successfully compromises a commercial RAG system deployed on Alibaba's BaiLian platform, demonstrating its practical threat in real-world applications. These findings underscore the need for more robust and secure RAG frameworks to defend against poisoning attacks.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG)は、外部知識を取り入れた大規模言語モデル(LLM)を強化するが、その開放性は、毒殺攻撃によって悪用される脆弱性を導入する。
既存のRAGシステムに対する中毒法には、一般化の欠如や、敵のテキストにおける流布の欠如など、制限がある。
本稿では,検索処理を操作可能なクエリ関連テキストを生成するブラックボックス対応フレームワークであるCPA-RAGを提案する。
提案手法は,複数 LLM を用いた逐次テキスト生成,複数 LLM によるクロスガイド最適化,高品質な逆数サンプル構築のためのレシーバーに基づくスコアリングを統合した。
複数のデータセットとLCMにまたがる広範な実験を行い、その有効性を評価する。
その結果,トップk検索設定が5である場合,フレームワークは攻撃成功率を90%以上達成し,各トップk値の約5ポイントを一貫した優位性を維持していることがわかった。
また、既存のブラックボックスベースラインを、様々な防衛戦略の下で14.5ポイント上回っている。
さらに,当社の手法は,AlibabaのBaiLianプラットフォーム上にデプロイされた商用RAGシステムを悪用し,現実のアプリケーションにおける現実的な脅威を実証する。
これらの知見は、より堅牢でセキュアなRAGフレームワークが毒殺攻撃から守る必要性を浮き彫りにした。
関連論文リスト
- Benchmarking Poisoning Attacks against Retrieval-Augmented Generation [12.573766276297441]
Retrieval-Augmented Generation (RAG) は、推論中に外部知識を取り入れることで、大規模言語モデルにおける幻覚の緩和に有効であることが証明されている。
我々は、RAGに対する中毒攻撃を評価するための、最初の包括的なベンチマークフレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-24T06:17:59Z) - Poisoned-MRAG: Knowledge Poisoning Attacks to Multimodal Retrieval Augmented Generation [71.32665836294103]
マルチモーダル検索強化世代(RAG)は視覚言語モデル(VLM)の視覚的推論能力を向上させる
本研究では,マルチモーダルRAGシステムに対する最初の知識中毒攻撃であるtextitPoisoned-MRAGを紹介する。
論文 参考訳(メタデータ) (2025-03-08T15:46:38Z) - MM-PoisonRAG: Disrupting Multimodal RAG with Local and Global Poisoning Attacks [109.53357276796655]
Retrieval Augmented Generation (RAG) を備えたマルチモーダル大言語モデル(MLLM)
RAGはクエリ関連外部知識の応答を基盤としてMLLMを強化する。
この依存は、知識中毒攻撃(英語版)という、危険だが未発見の安全リスクを生じさせる。
本稿では,2つの攻撃戦略を持つ新しい知識中毒攻撃フレームワークMM-PoisonRAGを提案する。
論文 参考訳(メタデータ) (2025-02-25T04:23:59Z) - FlippedRAG: Black-Box Opinion Manipulation Adversarial Attacks to Retrieval-Augmented Generation Models [22.35026334463735]
我々は、ブラックボックスRAGシステムに対するトランスファーベースの敵攻撃であるFlippedRAGを提案する。
FlippedRAGは、RAG生成反応の意見において平均50%の方向シフトを達成する。
これらの結果は、RAGシステムのセキュリティと信頼性を確保するために革新的な防衛ソリューションを開発する緊急の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2025-01-06T12:24:57Z) - Rag and Roll: An End-to-End Evaluation of Indirect Prompt Manipulations in LLM-based Application Frameworks [12.061098193438022]
Retrieval Augmented Generation (RAG) は、分散知識を欠くモデルによく用いられる手法である。
本稿では,RAGシステムのエンドツーエンドの間接的なプロンプト操作に対する安全性について検討する。
論文 参考訳(メタデータ) (2024-08-09T12:26:05Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に焦点をあてて,完全性,幻覚,不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - PoisonedRAG: Knowledge Corruption Attacks to Retrieval-Augmented Generation of Large Language Models [45.409248316497674]
大規模言語モデル(LLM)は、その例外的な生成能力により、顕著な成功を収めた。
Retrieval-Augmented Generation (RAG)は、これらの制限を緩和するための最先端技術である。
RAGシステムにおける知識データベースは,新たな,実用的な攻撃面を導入している。
この攻撃面に基づいて,RAGに対する最初の知識汚職攻撃であるPoisonedRAGを提案する。
論文 参考訳(メタデータ) (2024-02-12T18:28:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。