Deconstructing Obfuscation: A four-dimensional framework for evaluating Large Language Models assembly code deobfuscation capabilities
- URL: http://arxiv.org/abs/2505.19887v2
- Date: Thu, 05 Jun 2025 10:02:39 GMT
- Title: Deconstructing Obfuscation: A four-dimensional framework for evaluating Large Language Models assembly code deobfuscation capabilities
- Authors: Anton Tkachenko, Dmitrij Suskevic, Benjamin Adolphi,
- Abstract summary: Large language models (LLMs) have shown promise in software engineering, yet their effectiveness for binary analysis remains unexplored.<n>We present the first comprehensive evaluation of commercial LLMs for assembly code deobfuscation.
- Score: 0.49157446832511503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown promise in software engineering, yet their effectiveness for binary analysis remains unexplored. We present the first comprehensive evaluation of commercial LLMs for assembly code deobfuscation. Testing seven state-of-the-art models against four obfuscation scenarios (bogus control flow, instruction substitution, control flow flattening, and their combination), we found striking performance variations--from autonomous deobfuscation to complete failure. We propose a theoretical framework based on four dimensions: Reasoning Depth, Pattern Recognition, Noise Filtering, and Context Integration, explaining these variations. Our analysis identifies five error patterns: predicate misinterpretation, structural mapping errors, control flow misinterpretation, arithmetic transformation errors, and constant propagation errors, revealing fundamental limitations in LLM code processing.We establish a three-tier resistance model: bogus control flow (low resistance), control flow flattening (moderate resistance), and instruction substitution/combined techniques (high resistance). Universal failure against combined techniques demonstrates that sophisticated obfuscation remains effective against advanced LLMs. Our findings suggest a human-AI collaboration paradigm where LLMs reduce expertise barriers for certain reverse engineering tasks while requiring human guidance for complex deobfuscation. This work provides a foundation for evaluating emerging capabilities and developing resistant obfuscation techniques.x deobfuscation. This work provides a foundation for evaluating emerging capabilities and developing resistant obfuscation techniques.
Related papers
- Con Instruction: Universal Jailbreaking of Multimodal Large Language Models via Non-Textual Modalities [76.9327488986162]
Existing attacks against multimodal language models (MLLMs) primarily communicate instructions through text accompanied by adversarial images.<n>We exploit the capabilities of MLLMs to interpret non-textual instructions, specifically, adversarial images or audio generated by our novel method, Con Instruction.<n>Our method achieves the highest attack success rates, reaching 81.3% and 86.6% on LLaVA-v1.5 (13B)
arXiv Detail & Related papers (2025-05-31T13:11:14Z) - Helping Large Language Models Protect Themselves: An Enhanced Filtering and Summarization System [2.0257616108612373]
Large Language Models are vulnerable to adversarial assaults, manipulative prompts, and encoded malicious inputs.<n>This study presents a unique defense paradigm that allows LLMs to recognize, filter, and defend against adversarial or malicious inputs on their own.
arXiv Detail & Related papers (2025-05-02T14:42:26Z) - The Code Barrier: What LLMs Actually Understand? [7.407441962359689]
This research uses code obfuscation as a structured testing framework to evaluate semantic understanding capabilities of language models.<n>Findings show a statistically significant performance decline as obfuscation complexity increases.<n>This research introduces a new evaluation approach for assessing code comprehension in language models.
arXiv Detail & Related papers (2025-04-14T14:11:26Z) - ObscuraCoder: Powering Efficient Code LM Pre-Training Via Obfuscation Grounding [60.37988508851391]
Language models (LMs) have become a staple of the code-writing toolbox.<n>Research exploring modifications to Code-LMs' pre-training objectives, geared towards improving data efficiency and better disentangling between syntax and semantics, has been noticeably sparse.<n>In this work, we examine grounding on obfuscated code as a means of helping Code-LMs look beyond the surface-form syntax and enhance their pre-training sample efficiency.
arXiv Detail & Related papers (2025-03-27T23:08:53Z) - Code Change Intention, Development Artifact and History Vulnerability: Putting Them Together for Vulnerability Fix Detection by LLM [13.278153690972243]
VulFixMiner and CoLeFunDa focus solely on code changes, neglecting essential context from development artifacts.<n>We propose LLM4VFD, a novel framework that leverages Large Language Models (LLMs) enhanced with Chain-of-Thought reasoning and In-Context Learning.
arXiv Detail & Related papers (2025-01-24T23:40:03Z) - What You See Is Not Always What You Get: An Empirical Study of Code Comprehension by Large Language Models [0.5735035463793009]
We investigate the vulnerability of large language models (LLMs) to imperceptible attacks, where hidden character manipulation in source code misleads LLMs' behaviour while remaining undetectable to human reviewers.<n>These attacks include coding reordering, invisible coding characters, code deletions, and code homoglyphs.<n>Our findings confirm the susceptibility of LLMs to imperceptible coding character attacks, while different LLMs present different negative correlations between perturbation magnitude and performance.
arXiv Detail & Related papers (2024-12-11T04:52:41Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal [64.9938658716425]
SORRY-Bench is a proposed benchmark for evaluating large language models' (LLMs) ability to recognize and reject unsafe user requests.<n>First, existing methods often use coarse-grained taxonomy of unsafe topics, and are over-representing some fine-grained topics.<n>Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations.
arXiv Detail & Related papers (2024-06-20T17:56:07Z) - Transfer Attacks and Defenses for Large Language Models on Coding Tasks [30.065641782962974]
We study the effect of adversarial perturbations on coding tasks with large language models (LLMs)
We propose prompt-based defenses that involve modifying the prompt to include examples of adversarially perturbed code and explicit instructions for reversing adversarial perturbations.
Our experiments show that adversarial examples obtained with a smaller code model are indeed transferable, weakening the LLMs' performance.
arXiv Detail & Related papers (2023-11-22T15:11:35Z) - Contrastive Decoding Improves Reasoning in Large Language Models [55.16503283583076]
We show that Contrastive Decoding achieves large out-of-the-box improvements over greedy decoding on a variety of reasoning tasks.
We show that Contrastive Decoding leads LLaMA-65B to outperform LLaMA 2, GPT-3.5 and PaLM 2-L on the HellaSwag commonsense reasoning benchmark.
arXiv Detail & Related papers (2023-09-17T00:29:32Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
Large language models (LLMs) present significant safety and ethical risks if exploited by malicious users.
Recent works have proposed algorithms to detect LLM-generated text and protect LLMs.
We study two types of attack strategies: 1) replacing certain words in an LLM's output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation.
arXiv Detail & Related papers (2023-05-31T10:08:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.