論文の概要: Generalized and Personalized Federated Learning with Foundation Models via Orthogonal Transformations
- arxiv url: http://arxiv.org/abs/2505.19888v1
- Date: Mon, 26 May 2025 12:18:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.408168
- Title: Generalized and Personalized Federated Learning with Foundation Models via Orthogonal Transformations
- Title(参考訳): 直交変換による基礎モデルによる一般化・パーソナライズド・フェデレーション学習
- Authors: Eun Gyung Kong, Je Won Yeom, Yonghoon Jeon, Taesup Kim,
- Abstract要約: Federated Learningは、集中的なデータ収集を必要とせずに、分散化されたクライアントやローカルデータを保持するデバイス間でモデルをトレーニングすることを目的としている。
我々は,ブラックボックス基盤モデルを活用した新しいアプローチであるFedOTを紹介する。
FedOTは、さまざまなクライアント間の勾配競合を緩和し、セマンティックな整合性を保持し、実質的なデータの存在下でも堅牢なパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 4.008780119020479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) aims to train models across decentralized clients or devices holding local data without the need for centralized data collection, thus enhancing data privacy and security. However, achieving both generalization and personalization in heterogeneous settings remains a significant challenge. To address this, we introduce FedOT, a novel approach that leverages black-box foundation models. FedOT shares only a global task-dependent classifier across clients while locally adapting features through orthogonal transformations. By enforcing orthogonality, FedOT mitigates gradient conflicts across diverse clients, preserves semantic integrity, and achieves robust performance even in the presence of substantial data heterogeneity. The strategy of combining global and local parameters enables a more balanced approach for both generalization and personalization, outperforming baseline FL methods across multiple benchmarks. Furthermore, our extensive analysis confirms that joint optimization of global classifiers and local orthogonal transformations yields superior performance and suggests broader applicability.
- Abstract(参考訳): Federated Learning(FL)は、集中的なデータ収集を必要とせずに、分散化されたクライアントやローカルデータを保持するデバイス間でモデルをトレーニングすることを目的としている。
しかし、不均一な環境での一般化とパーソナライズの両方を達成することは大きな課題である。
これを解決するために,ブラックボックス基盤モデルを活用した新しいアプローチであるFedOTを導入する。
FedOTは、クライアント間でグローバルなタスク依存の分類器を共有するだけで、直交変換を通じて機能を局所的に適用する。
直交性を強制することにより、FedOTはさまざまなクライアント間の勾配の衝突を緩和し、セマンティックな整合性を保ち、実質的なデータ不均一性があっても堅牢なパフォーマンスを達成する。
グローバルパラメータとローカルパラメータを組み合わせる戦略は、一般化とパーソナライゼーションの両方においてよりバランスのとれたアプローチを可能にし、複数のベンチマークでベースラインFL法より優れている。
さらに,大域的分類器と局所直交変換の合同最適化により,性能が向上し,より広範な適用性が示唆された。
関連論文リスト
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
フェデレートラーニング(FL)は、様々なクライアントからローカルに最適化されたモデルと、統一されたグローバルモデルを組み合わせる。
FLは、性能劣化、収束の遅さ、グローバルモデルの堅牢性低下など、重大な課題に直面している。
これらの問題を効果的に解決するために、革新的なデュアルストラテジーアプローチを導入する。
論文 参考訳(メタデータ) (2024-12-05T18:42:29Z) - Adversarial Federated Consensus Learning for Surface Defect Classification Under Data Heterogeneity in IIoT [8.48069043458347]
産業用IoT(Industrial Internet of Things)における各種エンティティからの十分なトレーニングデータの収集と集中化は難しい。
フェデレートラーニング(FL)は、クライアント間で協調的なグローバルモデルトレーニングを可能にするソリューションを提供する。
我々は,Adversarial Federated Consensus Learning (AFedCL) という新しいFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-24T03:59:32Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FedLoGe: Joint Local and Generic Federated Learning under Long-tailed
Data [46.29190753993415]
Federated Long-Tailed Learning (Fed-LT)は、分散化されたローカルクライアントから収集されたデータが、グローバルに普及しているロングテール分布を示すパラダイムである。
本稿では、Fed-LT(FedLoGe)におけるFederated Local and Generic Model Training(FedLoGe)というアプローチを紹介し、ローカルモデルとジェネリックモデルの両方のパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-01-17T05:04:33Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape [59.841889495864386]
フェデレートラーニング(FL)では、グローバルサーバの協調の下で、ローカルクライアントのクラスタがチェアリングされる。
クライアントは自身のオプティマに過度に適合する傾向にあり、グローバルな目標から非常に逸脱する。
tt Family FedSMOOは、グローバルな目的に対する局所的な最適性を保証するために動的正規化器を採用する。
理論解析により, tt Family FedSMOO は, 低境界一般化による高速$mathcalO (1/T)$収束率を達成することが示された。
論文 参考訳(メタデータ) (2023-05-19T10:47:44Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
フェデレートラーニング(FL)は、複数のクライアントがプライベートデータを共有せずに、高性能なグローバルモデルを集合的にトレーニングすることを可能にする。
局所的ドリフトデカップリングと補正(FedDC)を用いた新しいフェデレーション学習アルゴリズムを提案する。
私たちのFedDCでは、ローカルモデルパラメータとグローバルモデルパラメータのギャップを追跡するために、各クライアントが補助的なローカルドリフト変数を使用するような、ローカルトレーニングフェーズにおける軽量な修正のみを導入しています。
実験結果と解析結果から,FedDCは様々な画像分類タスクにおいて,収差の迅速化と性能の向上を図っている。
論文 参考訳(メタデータ) (2022-03-22T14:06:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。