Ontology- and LLM-based Data Harmonization for Federated Learning in Healthcare
- URL: http://arxiv.org/abs/2505.20020v1
- Date: Mon, 26 May 2025 14:09:17 GMT
- Title: Ontology- and LLM-based Data Harmonization for Federated Learning in Healthcare
- Authors: Natallia Kokash, Lei Wang, Thomas H. Gillespie, Adam Belloum, Paola Grosso, Sara Quinney, Lang Li, Bernard de Bono,
- Abstract summary: Federated learning (FL) enables collaborative modeling without sharing data, yet faces challenges harmonizing raw data in diverse clinical datasets.<n>This paper presents a two-step data alignment strategy integrating large models (LLMs) to support secure, privacy-preserving FL in healthcare.
- Score: 1.791002543005888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of electronic health records (EHRs) has unlocked new opportunities for medical research, but privacy regulations and data heterogeneity remain key barriers to large-scale machine learning. Federated learning (FL) enables collaborative modeling without sharing raw data, yet faces challenges in harmonizing diverse clinical datasets. This paper presents a two-step data alignment strategy integrating ontologies and large language models (LLMs) to support secure, privacy-preserving FL in healthcare, demonstrating its effectiveness in a real-world project involving semantic mapping of EHR data.
Related papers
- A Case Study Exploring the Current Landscape of Synthetic Medical Record Generation with Commercial LLMs [1.1645633237702129]
We evaluate the current state of commercial Large Language Models for generating synthetic data.<n>Our main finding is that while LLMs can reliably generate synthetic health records for smaller subsets of features, they struggle to preserve realistic distributions and correlations as the dimensionality of the data increases.
arXiv Detail & Related papers (2025-04-20T15:37:05Z) - FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment.
Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality.
This paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD.
arXiv Detail & Related papers (2024-10-28T02:24:01Z) - Open Challenges and Opportunities in Federated Foundation Models Towards Biomedical Healthcare [14.399086205317358]
Foundation models (FMs) are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback.
These models are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions.
The incorporation of FL with these sophisticated models presents a promising strategy to harness their analytical power while safeguarding the privacy of sensitive medical data.
arXiv Detail & Related papers (2024-05-10T19:22:24Z) - A Distributed Privacy Preserving Model for the Detection of Alzheimer's Disease [0.0]
This paper introduces a HIPAA compliant framework that can train from distributed data.
I then propose a multimodal vertical federated model for Alzheimer's Disease (AD) detection.
The VFL architecture proposed herein offers a novel distributed architecture, enabling collaborative learning across diverse sources of medical data.
arXiv Detail & Related papers (2023-12-15T22:09:04Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Multi-Site Clinical Federated Learning using Recursive and Attentive
Models and NVFlare [13.176351544342735]
This paper develops an integrated framework that addresses data privacy and regulatory compliance challenges.
It includes the development of an integrated framework that addresses data privacy and regulatory compliance challenges while maintaining elevated accuracy and substantiating the efficacy of the proposed approach.
arXiv Detail & Related papers (2023-06-28T17:00:32Z) - Patchwork Learning: A Paradigm Towards Integrative Analysis across
Diverse Biomedical Data Sources [40.32772510980854]
"patchwork learning" (PL) is a paradigm that integrates information from disparate datasets composed of different data modalities.
PL allows the simultaneous utilization of complementary data sources while preserving data privacy.
We present the concept of patchwork learning and its current implementations in healthcare, exploring the potential opportunities and applicable data sources.
arXiv Detail & Related papers (2023-05-10T14:50:33Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Differentially private federated deep learning for multi-site medical
image segmentation [56.30543374146002]
Collaborative machine learning techniques such as federated learning (FL) enable the training of models on effectively larger datasets without data transfer.
Recent initiatives have demonstrated that segmentation models trained with FL can achieve performance similar to locally trained models.
However, FL is not a fully privacy-preserving technique and privacy-centred attacks can disclose confidential patient data.
arXiv Detail & Related papers (2021-07-06T12:57:32Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - Anonymizing Data for Privacy-Preserving Federated Learning [3.3673553810697827]
We propose the first syntactic approach for offering privacy in the context of federated learning.
Our approach aims to maximize utility or model performance, while supporting a defensible level of privacy.
We perform a comprehensive empirical evaluation on two important problems in the healthcare domain, using real-world electronic health data of 1 million patients.
arXiv Detail & Related papers (2020-02-21T02:30:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.