EmoNet-Face: An Expert-Annotated Benchmark for Synthetic Emotion Recognition
- URL: http://arxiv.org/abs/2505.20033v2
- Date: Tue, 27 May 2025 07:26:21 GMT
- Title: EmoNet-Face: An Expert-Annotated Benchmark for Synthetic Emotion Recognition
- Authors: Christoph Schuhmann, Robert Kaczmarczyk, Gollam Rabby, Felix Friedrich, Maurice Kraus, Krishna Kalyan, Kourosh Nadi, Huu Nguyen, Kristian Kersting, Sören Auer,
- Abstract summary: EmoNet Face is a comprehensive benchmark suite for developing and evaluating AI systems.<n>A novel 40-category emotion taxonomy captures finer details of human emotional experiences.<n>Three large-scale, AI-generated datasets with explicit, full-face expressions.<n>EmpathicInsight-Face is a model achieving human-expert-level performance on our benchmark.
- Score: 18.8101367995391
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective human-AI interaction relies on AI's ability to accurately perceive and interpret human emotions. Current benchmarks for vision and vision-language models are severely limited, offering a narrow emotional spectrum that overlooks nuanced states (e.g., bitterness, intoxication) and fails to distinguish subtle differences between related feelings (e.g., shame vs. embarrassment). Existing datasets also often use uncontrolled imagery with occluded faces and lack demographic diversity, risking significant bias. To address these critical gaps, we introduce EmoNet Face, a comprehensive benchmark suite. EmoNet Face features: (1) A novel 40-category emotion taxonomy, meticulously derived from foundational research to capture finer details of human emotional experiences. (2) Three large-scale, AI-generated datasets (EmoNet HQ, Binary, and Big) with explicit, full-face expressions and controlled demographic balance across ethnicity, age, and gender. (3) Rigorous, multi-expert annotations for training and high-fidelity evaluation. (4) We built EmpathicInsight-Face, a model achieving human-expert-level performance on our benchmark. The publicly released EmoNet Face suite - taxonomy, datasets, and model - provides a robust foundation for developing and evaluating AI systems with a deeper understanding of human emotions.
Related papers
- KEVER^2: Knowledge-Enhanced Visual Emotion Reasoning and Retrieval [35.77379981826482]
We propose textbfK-EVERtextsuperscript2, a knowledge-enhanced framework for emotion reasoning and retrieval.<n>Our approach introduces a semantically structured formulation of visual emotion cues and integrates external affective knowledge through multimodal alignment.<n>We validate our framework on three representative benchmarks, Emotion6, EmoSet, and M-Disaster, covering social media imagery, human-centric scenes, and disaster contexts.
arXiv Detail & Related papers (2025-05-30T08:33:32Z) - Artificial Intelligence Can Emulate Human Normative Judgments on Emotional Visual Scenes [0.09208007322096533]
We study whether state-of-the-art multimodal systems can emulate human emotional ratings on a standardized set of images.<n>The AI judgements correlate surprisingly well with the average human ratings.
arXiv Detail & Related papers (2025-03-24T15:41:23Z) - When Words Smile: Generating Diverse Emotional Facial Expressions from Text [72.19705878257204]
We introduce an end-to-end text-to-expression model that explicitly focuses on emotional dynamics.<n>Our model learns expressive facial variations in a continuous latent space and generates expressions that are diverse, fluid, and emotionally coherent.
arXiv Detail & Related papers (2024-12-03T15:39:05Z) - MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis [53.012111671763776]
This study introduces MEMO-Bench, a comprehensive benchmark consisting of 7,145 portraits, each depicting one of six different emotions.
Results demonstrate that existing T2I models are more effective at generating positive emotions than negative ones.
Although MLLMs show a certain degree of effectiveness in distinguishing and recognizing human emotions, they fall short of human-level accuracy.
arXiv Detail & Related papers (2024-11-18T02:09:48Z) - Contextual Emotion Recognition using Large Vision Language Models [0.6749750044497732]
Achieving human-level recognition of the apparent emotion of a person in real world situations remains an unsolved task in computer vision.<n>In this paper, we examine two major approaches enabled by recent large vision language models.<n>We demonstrate that a vision language model, fine-tuned even on a small dataset, can significantly outperform traditional baselines.
arXiv Detail & Related papers (2024-05-14T23:24:12Z) - EmoBench: Evaluating the Emotional Intelligence of Large Language Models [73.60839120040887]
EmoBench is a benchmark that draws upon established psychological theories and proposes a comprehensive definition for machine Emotional Intelligence (EI)
EmoBench includes a set of 400 hand-crafted questions in English and Chinese, which are meticulously designed to require thorough reasoning and understanding.
Our findings reveal a considerable gap between the EI of existing Large Language Models and the average human, highlighting a promising direction for future research.
arXiv Detail & Related papers (2024-02-19T11:48:09Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - Language Models (Mostly) Do Not Consider Emotion Triggers When Predicting Emotion [87.18073195745914]
We investigate how well human-annotated emotion triggers correlate with features deemed salient in their prediction of emotions.
Using EmoTrigger, we evaluate the ability of large language models to identify emotion triggers.
Our analysis reveals that emotion triggers are largely not considered salient features for emotion prediction models, instead there is intricate interplay between various features and the task of emotion detection.
arXiv Detail & Related papers (2023-11-16T06:20:13Z) - EmoSet: A Large-scale Visual Emotion Dataset with Rich Attributes [53.95428298229396]
We introduce EmoSet, the first large-scale visual emotion dataset annotated with rich attributes.
EmoSet comprises 3.3 million images in total, with 118,102 of these images carefully labeled by human annotators.
Motivated by psychological studies, in addition to emotion category, each image is also annotated with a set of describable emotion attributes.
arXiv Detail & Related papers (2023-07-16T06:42:46Z) - HICEM: A High-Coverage Emotion Model for Artificial Emotional
Intelligence [9.153146173929935]
Next-generation artificial emotional intelligence (AEI) is taking center stage to address users' desire for deeper, more meaningful human-machine interaction.
Unlike theory of emotion, which has been the historical focus in psychology, emotion models are a descriptive tools.
This work has broad implications in social robotics, human-machine interaction, mental healthcare, and computational psychology.
arXiv Detail & Related papers (2022-06-15T15:21:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.