When Words Smile: Generating Diverse Emotional Facial Expressions from Text
- URL: http://arxiv.org/abs/2412.02508v3
- Date: Thu, 31 Jul 2025 07:07:51 GMT
- Title: When Words Smile: Generating Diverse Emotional Facial Expressions from Text
- Authors: Haidong Xu, Meishan Zhang, Hao Ju, Zhedong Zheng, Erik Cambria, Min Zhang, Hao Fei,
- Abstract summary: We introduce an end-to-end text-to-expression model that explicitly focuses on emotional dynamics.<n>Our model learns expressive facial variations in a continuous latent space and generates expressions that are diverse, fluid, and emotionally coherent.
- Score: 72.19705878257204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enabling digital humans to express rich emotions has significant applications in dialogue systems, gaming, and other interactive scenarios. While recent advances in talking head synthesis have achieved impressive results in lip synchronization, they tend to overlook the rich and dynamic nature of facial expressions. To fill this critical gap, we introduce an end-to-end text-to-expression model that explicitly focuses on emotional dynamics. Our model learns expressive facial variations in a continuous latent space and generates expressions that are diverse, fluid, and emotionally coherent. To support this task, we introduce EmoAva, a large-scale and high-quality dataset containing 15,000 text-3D expression pairs. Extensive experiments on both existing datasets and EmoAva demonstrate that our method significantly outperforms baselines across multiple evaluation metrics, marking a significant advancement in the field.
Related papers
- Think-Before-Draw: Decomposing Emotion Semantics & Fine-Grained Controllable Expressive Talking Head Generation [7.362433184546492]
Emotional talking-head generation has emerged as a pivotal research area at the intersection of computer vision and multimodal artificial intelligence.<n>This study proposes the Think-Before-Draw framework to address two key challenges.
arXiv Detail & Related papers (2025-07-17T03:33:46Z) - From Coarse to Nuanced: Cross-Modal Alignment of Fine-Grained Linguistic Cues and Visual Salient Regions for Dynamic Emotion Recognition [7.362433184546492]
Dynamic Facial Expression Recognition aims to identify human emotions from temporally evolving facial movements.<n>Our method integrates dynamic motion modeling, semantic text refinement, and token-level cross-modal alignment to facilitate the precise localization of emotionally salient features.
arXiv Detail & Related papers (2025-07-16T04:15:06Z) - Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation [63.94836524433559]
DICE-Talk is a framework for disentangling identity with emotion and cooperating emotions with similar characteristics.<n>We develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention.<n>Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks.<n>Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process.
arXiv Detail & Related papers (2025-04-25T05:28:21Z) - Enhancing Multi-Label Emotion Analysis and Corresponding Intensities for Ethiopian Languages [7.18917640223178]
We present annotating emotions in a multilabel setting such as the EthioEmo dataset.<n>We include annotations for the intensity of each labeled emotion.<n>We evaluate various state-of-the-art encoder-only Pretrained Language Models (PLMs) and decoder-only Large Language Models (LLMs)
arXiv Detail & Related papers (2025-03-24T00:34:36Z) - MoEE: Mixture of Emotion Experts for Audio-Driven Portrait Animation [39.30784838378127]
The generation of talking avatars has achieved significant advancements in precise audio synchronization.<n>Current methods face fundamental challenges, including the lack of frameworks for modeling single basic emotional expressions.<n>We propose the Mixture of Emotion Experts (MoEE) model, which decouples six fundamental emotions to enable the precise synthesis of both singular and compound emotional states.<n>In conjunction with the DH-FaceEmoVid-150 dataset, we demonstrate that the MoEE framework excels in generating complex emotional expressions and nuanced facial details.
arXiv Detail & Related papers (2025-01-03T13:43:21Z) - Enriching Multimodal Sentiment Analysis through Textual Emotional Descriptions of Visual-Audio Content [56.62027582702816]
Multimodal Sentiment Analysis seeks to unravel human emotions by amalgamating text, audio, and visual data.<n>Yet, discerning subtle emotional nuances within audio and video expressions poses a formidable challenge.<n>We introduce DEVA, a progressive fusion framework founded on textual sentiment descriptions.
arXiv Detail & Related papers (2024-12-12T11:30:41Z) - Emo3D: Metric and Benchmarking Dataset for 3D Facial Expression Generation from Emotion Description [3.52270271101496]
"Emo3D" is an extensive "Text-Image-Expression dataset" spanning a wide spectrum of human emotions.
We generate a diverse array of textual descriptions, facilitating the capture of a broad spectrum of emotional expressions.
"Emo3D" has great applications in animation design, virtual reality, and emotional human-computer interaction.
arXiv Detail & Related papers (2024-10-02T21:31:24Z) - DreamWaltz-G: Expressive 3D Gaussian Avatars from Skeleton-Guided 2D
Diffusion [69.67970568012599]
We present DreamWaltz-G, a novel learning framework for animatable 3D avatar generation from text.
The core of this framework lies in Score Distillation and Hybrid 3D Gaussian Avatar representation.
Our framework further supports diverse applications, including human video reenactment and multi-subject scene composition.
arXiv Detail & Related papers (2024-09-25T17:59:45Z) - EmoTalk3D: High-Fidelity Free-View Synthesis of Emotional 3D Talking Head [30.138347111341748]
We present a novel approach for synthesizing 3D talking heads with controllable emotion.
Our model enables controllable emotion in the generated talking heads and can be rendered in wide-range views.
Experiments demonstrate the effectiveness of our approach in generating high-fidelity and emotion-controllable 3D talking heads.
arXiv Detail & Related papers (2024-08-01T05:46:57Z) - EmoVOCA: Speech-Driven Emotional 3D Talking Heads [12.161006152509653]
We propose an innovative data-driven technique for creating a synthetic dataset, called EmoVOCA.
We then designed and trained an emotional 3D talking head generator that accepts a 3D face, an audio file, an emotion label, and an intensity value as inputs, and learns to animate the audio-synchronized lip movements with expressive traits of the face.
arXiv Detail & Related papers (2024-03-19T16:33:26Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
We propose a generative refinement network to synthesize new contents with higher quality by exploiting the natural image prior to 2D diffusion model and the global 3D information of the current scene.
Our approach supports wide variety of scene generation and arbitrary camera trajectories with improved visual quality and 3D consistency.
arXiv Detail & Related papers (2024-03-14T14:31:22Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - T$^3$Bench: Benchmarking Current Progress in Text-to-3D Generation [52.029698642883226]
Methods in text-to-3D leverage powerful pretrained diffusion models to optimize NeRF.
Most studies evaluate their results with subjective case studies and user experiments.
We introduce T$3$Bench, the first comprehensive text-to-3D benchmark.
arXiv Detail & Related papers (2023-10-04T17:12:18Z) - Towards High-Fidelity Text-Guided 3D Face Generation and Manipulation
Using only Images [105.92311979305065]
TG-3DFace creates more realistic and aesthetically pleasing 3D faces, boosting 9% multi-view consistency (MVIC) over Latent3D.
The rendered face images generated by TG-3DFace achieve higher FID and CLIP score than text-to-2D face/image generation models.
arXiv Detail & Related papers (2023-08-31T14:26:33Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - Next3D: Generative Neural Texture Rasterization for 3D-Aware Head
Avatars [36.4402388864691]
3D-aware generative adversarial networks (GANs) synthesize high-fidelity and multi-view-consistent facial images using only collections of single-view 2D imagery.
Recent efforts incorporate 3D Morphable Face Model (3DMM) to describe deformation in generative radiance fields either explicitly or implicitly.
We propose a novel 3D GAN framework for unsupervised learning of generative, high-quality and 3D-consistent facial avatars from unstructured 2D images.
arXiv Detail & Related papers (2022-11-21T06:40:46Z) - Controllable 3D Generative Adversarial Face Model via Disentangling
Shape and Appearance [63.13801759915835]
3D face modeling has been an active area of research in computer vision and computer graphics.
This paper proposes a new 3D face generative model that can decouple identity and expression.
arXiv Detail & Related papers (2022-08-30T13:40:48Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
We discuss several key aspects of multi-modal emotion recognition (MER)
We begin with a brief introduction on widely used emotion representation models and affective modalities.
We then summarize existing emotion annotation strategies and corresponding computational tasks.
Finally, we outline several real-world applications and discuss some future directions.
arXiv Detail & Related papers (2021-08-18T21:55:20Z) - 3D to 4D Facial Expressions Generation Guided by Landmarks [35.61963927340274]
Given one input 3D neutral face, can we generate dynamic 3D (4D) facial expressions from it?
We first propose a mesh encoder-decoder architecture (Expr-ED) that exploits a set of 3D landmarks to generate an expressive 3D face from its neutral counterpart.
We extend it to 4D by modeling the temporal dynamics of facial expressions using a manifold-valued GAN.
arXiv Detail & Related papers (2021-05-16T15:52:29Z) - Infusing Multi-Source Knowledge with Heterogeneous Graph Neural Network
for Emotional Conversation Generation [25.808037796936766]
In a real-world conversation, we instinctively perceive emotions from multi-source information.
We propose a heterogeneous graph-based model for emotional conversation generation.
Experimental results show that our model can effectively perceive emotions from multi-source knowledge.
arXiv Detail & Related papers (2020-12-09T06:09:31Z) - Facial Expression Editing with Continuous Emotion Labels [76.36392210528105]
Deep generative models have achieved impressive results in the field of automated facial expression editing.
We propose a model that can be used to manipulate facial expressions in facial images according to continuous two-dimensional emotion labels.
arXiv Detail & Related papers (2020-06-22T13:03:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.