Eradicating the Unseen: Detecting, Exploiting, and Remediating a Path Traversal Vulnerability across GitHub
- URL: http://arxiv.org/abs/2505.20186v1
- Date: Mon, 26 May 2025 16:29:21 GMT
- Title: Eradicating the Unseen: Detecting, Exploiting, and Remediating a Path Traversal Vulnerability across GitHub
- Authors: Jafar Akhoundali, Hamidreza Hamidi, Kristian Rietveld, Olga Gadyatskaya,
- Abstract summary: Vulnerabilities in open-source software can cause cascading effects in the modern digital ecosystem.<n>We identified 1,756 vulnerable open-source projects, some of which are very influential.<n>We have responsibly disclosed the vulnerability to the maintainers, and 14% of the reported vulnerabilities have been remediated.
- Score: 1.2124551005857036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vulnerabilities in open-source software can cause cascading effects in the modern digital ecosystem. It is especially worrying if these vulnerabilities repeat across many projects, as once the adversaries find one of them, they can scale up the attack very easily. Unfortunately, since developers frequently reuse code from their own or external code resources, some nearly identical vulnerabilities exist across many open-source projects. We conducted a study to examine the prevalence of a particular vulnerable code pattern that enables path traversal attacks (CWE-22) across open-source GitHub projects. To handle this study at the GitHub scale, we developed an automated pipeline that scans GitHub for the targeted vulnerable pattern, confirms the vulnerability by first running a static analysis and then exploiting the vulnerability in the context of the studied project, assesses its impact by calculating the CVSS score, generates a patch using GPT-4, and reports the vulnerability to the maintainers. Using our pipeline, we identified 1,756 vulnerable open-source projects, some of which are very influential. For many of the affected projects, the vulnerability is critical (CVSS score higher than 9.0), as it can be exploited remotely without any privileges and critically impact the confidentiality and availability of the system. We have responsibly disclosed the vulnerability to the maintainers, and 14\% of the reported vulnerabilities have been remediated. We also investigated the root causes of the vulnerable code pattern and assessed the side effects of the large number of copies of this vulnerable pattern that seem to have poisoned several popular LLMs. Our study highlights the urgent need to help secure the open-source ecosystem by leveraging scalable automated vulnerability management solutions and raising awareness among developers.
Related papers
- CyberGym: Evaluating AI Agents' Cybersecurity Capabilities with Real-World Vulnerabilities at Scale [46.76144797837242]
Large language model (LLM) agents are becoming increasingly skilled at handling cybersecurity tasks autonomously.<n>Existing benchmarks fall short, often failing to capture real-world scenarios or being limited in scope.<n>We introduce CyberGym, a large-scale and high-quality cybersecurity evaluation framework featuring 1,507 real-world vulnerabilities.
arXiv Detail & Related papers (2025-06-03T07:35:14Z) - The Ripple Effect of Vulnerabilities in Maven Central: Prevalence, Propagation, and Mitigation Challenges [8.955037553566774]
We analyze the prevalence and impact of vulnerabilities within the Maven Central ecosystem using Common Vulnerabilities and Exposures data.<n>In our subsample of around 4 million releases, we found that while only about 1% of releases have direct vulnerabilities.<n>We also observed that the time taken to patch vulnerabilities, including those of high or critical severity, often spans several years.
arXiv Detail & Related papers (2025-04-05T13:45:27Z) - Generating Mitigations for Downstream Projects to Neutralize Upstream Library Vulnerability [8.673798395456185]
Third-party libraries are essential in software development as they prevent the need for developers to recreate existing functionalities.<n> upgrading dependencies to secure versions is not feasible to neutralize vulnerabilities without patches or in projects with specific version requirements.<n>Both the state-of-the-art automatic vulnerability repair and automatic program repair methods fail to address this issue.
arXiv Detail & Related papers (2025-03-31T16:20:29Z) - Investigating Vulnerability Disclosures in Open-Source Software Using Bug Bounty Reports and Security Advisories [6.814841205623832]
We conduct an empirical study on 3,798 reviewed GitHub security advisories and 4,033 disclosed OSS bug bounty reports.<n>We are the first to determine the explicit process describing how OSS vulnerabilities propagate from security advisories and bug bounty reports.
arXiv Detail & Related papers (2025-01-29T16:36:41Z) - Discovery of Timeline and Crowd Reaction of Software Vulnerability Disclosures [47.435076500269545]
Apache Log4J was found to be vulnerable to remote code execution attacks.
More than 35,000 packages were forced to update their Log4J libraries with the latest version.
It is practically reasonable for software developers to update their third-party libraries whenever the software vendors have released a vulnerable-free version.
arXiv Detail & Related papers (2024-11-12T01:55:51Z) - A Mixed-Methods Study of Open-Source Software Maintainers On Vulnerability Management and Platform Security Features [6.814841205623832]
This paper investigates the perspectives of OSS maintainers on vulnerability management and platform security features.<n>We find that supply chain mistrust and lack of automation for vulnerability management are the most challenging.<n> barriers to adopting platform security features include a lack of awareness and the perception that they are not necessary.
arXiv Detail & Related papers (2024-09-12T00:15:03Z) - On Security Weaknesses and Vulnerabilities in Deep Learning Systems [32.14068820256729]
We specifically look into deep learning (DL) framework and perform the first systematic study of vulnerabilities in DL systems.
We propose a two-stream data analysis framework to explore vulnerability patterns from various databases.
We conducted a large-scale empirical study of 3,049 DL vulnerabilities to better understand the patterns of vulnerability and the challenges in fixing them.
arXiv Detail & Related papers (2024-06-12T23:04:13Z) - Profile of Vulnerability Remediations in Dependencies Using Graph
Analysis [40.35284812745255]
This research introduces graph analysis methods and a modified Graph Attention Convolutional Neural Network (GAT) model.
We analyze control flow graphs to profile breaking changes in applications occurring from dependency upgrades intended to remediate vulnerabilities.
Results demonstrate the effectiveness of the enhanced GAT model in offering nuanced insights into the relational dynamics of code vulnerabilities.
arXiv Detail & Related papers (2024-03-08T02:01:47Z) - On the Security Blind Spots of Software Composition Analysis [46.1389163921338]
We present a novel approach to detect vulnerable clones in the Maven repository.
We retrieve over 53k potential vulnerable clones from Maven Central.
We detect 727 confirmed vulnerable clones and synthesize a testable proof-of-vulnerability project for each of those.
arXiv Detail & Related papers (2023-06-08T20:14:46Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.