Leveraging Descriptions of Emotional Preferences in Recommender Systems
- URL: http://arxiv.org/abs/2505.20190v1
- Date: Mon, 26 May 2025 16:33:14 GMT
- Title: Leveraging Descriptions of Emotional Preferences in Recommender Systems
- Authors: Tonmoy Hasan, Razvan Bunescu,
- Abstract summary: We introduce a novel recommendation task that can leverage a virtually unbounded range of affective states sought explicitly by the user.<n>We create a large dataset of user preferences containing expressions of fine-grained affective states that are mined from book reviews.<n>We then use the resulting dataset of affective states preferences, together with the linked users and their histories of book readings, ratings, and reviews, to train and evaluate multiple recommendation models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The affective attitude of liking a recommended item reflects just one category in a wide spectrum of affective phenomena that also includes emotions such as entranced or intrigued, moods such as cheerful or buoyant, as well as more fine-grained affective states, such as "pleasantly surprised by the conclusion". In this paper, we introduce a novel recommendation task that can leverage a virtually unbounded range of affective states sought explicitly by the user in order to identify items that, upon consumption, are likely to induce those affective states. Correspondingly, we create a large dataset of user preferences containing expressions of fine-grained affective states that are mined from book reviews, and propose a Transformer-based architecture that leverages such affective expressions as input. We then use the resulting dataset of affective states preferences, together with the linked users and their histories of book readings, ratings, and reviews, to train and evaluate multiple recommendation models on the task of matching recommended items with affective preferences. Experiments show that the best results are obtained by models that can utilize textual descriptions of items and user affective preferences.
Related papers
- ConsRec: Denoising Sequential Recommendation through User-Consistent Preference Modeling [33.281526528724335]
We propose the User-Consistent Preference-based Sequential Recommendation System (ConsRec)<n>ConsRec captures stable user preferences and filters noisy items from interaction histories.<n>Results show ConsRec achieves a 13% improvement over baseline recommendation models.
arXiv Detail & Related papers (2025-05-28T08:55:13Z) - Sentiment-Aware Recommendation Systems in E-Commerce: A Review from a Natural Language Processing Perspective [0.0]
This paper comprehensively reviews sentiment-aware recommendation systems from a natural language processing perspective.<n>It highlights the benefits of integrating sentiment analysis into e-commerce recommenders to enhance prediction accuracy and explainability.<n>Key challenges include handling noisy or sarcastic text, dynamic user preferences, and bias mitigation.
arXiv Detail & Related papers (2025-05-03T19:36:27Z) - Towards Empathetic Conversational Recommender Systems [77.53167131692]
We propose an empathetic conversational recommender (ECR) framework.
ECR contains two main modules: emotion-aware item recommendation and emotion-aligned response generation.
Our experiments on the ReDial dataset validate the efficacy of our framework in enhancing recommendation accuracy and improving user satisfaction.
arXiv Detail & Related papers (2024-08-30T15:43:07Z) - Modeling User Preferences via Brain-Computer Interfacing [54.3727087164445]
We use Brain-Computer Interfacing technology to infer users' preferences, their attentional correlates towards visual content, and their associations with affective experience.
We link these to relevant applications, such as information retrieval, personalized steering of generative models, and crowdsourcing population estimates of affective experiences.
arXiv Detail & Related papers (2024-05-15T20:41:46Z) - A First Look at Selection Bias in Preference Elicitation for Recommendation [64.44255178199846]
We study the effect of selection bias in preference elicitation on the resulting recommendations.
A big hurdle is the lack of any publicly available dataset that has preference elicitation interactions.
We propose a simulation of a topic-based preference elicitation process.
arXiv Detail & Related papers (2024-05-01T14:56:56Z) - Discovering Personalized Semantics for Soft Attributes in Recommender
Systems using Concept Activation Vectors [34.56323846959459]
Interactive recommender systems allow users to express intent, preferences, constraints, and contexts in a richer fashion.
One challenge is inferring a user's semantic intent from the open-ended terms or attributes often used to describe a desired item.
We develop a framework to learn a representation that captures the semantics of such attributes and connects them to user preferences and behaviors in recommender systems.
arXiv Detail & Related papers (2022-02-06T18:45:15Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
We propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation.
We first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.
Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels.
arXiv Detail & Related papers (2021-08-18T08:04:38Z) - Set2setRank: Collaborative Set to Set Ranking for Implicit Feedback
based Recommendation [59.183016033308014]
In this paper, we explore the unique characteristics of the implicit feedback and propose Set2setRank framework for recommendation.
Our proposed framework is model-agnostic and can be easily applied to most recommendation prediction approaches.
arXiv Detail & Related papers (2021-05-16T08:06:22Z) - Seamlessly Unifying Attributes and Items: Conversational Recommendation
for Cold-Start Users [111.28351584726092]
We consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively.
Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play.
arXiv Detail & Related papers (2020-05-23T08:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.