GPUMC: A Stateless Model Checker for GPU Weak Memory Concurrency
- URL: http://arxiv.org/abs/2505.20207v1
- Date: Mon, 26 May 2025 16:47:44 GMT
- Title: GPUMC: A Stateless Model Checker for GPU Weak Memory Concurrency
- Authors: Soham Chakraborty, S. Krishna, Andreas Pavlogiannis, Omkar Tuppe,
- Abstract summary: GPUMC is a stateless model checker to check the correctness of GPU shared-memory programs under scoped-RC11 weak memory model.<n>We evaluate GPUMC with benchmarks and real-life GPU programs.
- Score: 3.1882747895372217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: GPU computing is embracing weak memory concurrency for performance improvement. However, compared to CPUs, modern GPUs provide more fine-grained concurrency features such as scopes, have additional properties like divergence, and thereby follow different weak memory consistency models. These features and properties make concurrent programming on GPUs more complex and error-prone. To this end, we present GPUMC, a stateless model checker to check the correctness of GPU shared-memory concurrent programs under scoped-RC11 weak memory concurrency model. GPUMC explores all possible executions in GPU programs to reveal various errors - races, barrier divergence, and assertion violations. In addition, GPUMC also automatically repairs these errors in the appropriate cases. We evaluate GPUMC with benchmarks and real-life GPU programs. GPUMC is efficient both in time and memory in verifying large GPU programs where state-of-the-art tools are timed out. In addition, GPUMC identifies all known errors in these benchmarks compared to the state-of-the-art tools.
Related papers
- Minute-Long Videos with Dual Parallelisms [57.22737565366549]
Diffusion Transformer (DiT)-based video diffusion models generate high-quality videos at scale but incur prohibitive processing latency and memory costs for long videos.<n>We propose a novel distributed inference strategy, termed DualParal.<n>Instead of generating an entire video on a single GPU, we parallelize both temporal frames and model layers across GPUs.
arXiv Detail & Related papers (2025-05-27T11:55:22Z) - Characterizing GPU Resilience and Impact on AI/HPC Systems [5.4879032865205986]
We characterize GPU failures in Delta, the current large-scale AI system with over 600 petaprovision of peak compute throughput.<n>The study uses two and a half years of data on GPU errors.
arXiv Detail & Related papers (2025-03-14T22:14:18Z) - Deep Optimizer States: Towards Scalable Training of Transformer Models Using Interleaved Offloading [2.8231000588510757]
Transformers and large language models(LLMs) have seen rapid adoption in all domains.
Training of transformers is very expensive and often hits a memory wall''
We propose a novel technique to split the LLM into subgroups, whose update phase is scheduled on either the CPU or the GPU.
arXiv Detail & Related papers (2024-10-26T00:43:59Z) - LLMem: Estimating GPU Memory Usage for Fine-Tuning Pre-Trained LLMs [4.536118764799076]
Fine-tuning pre-trained large language models with limited hardware presents challenges due to GPU memory constraints.
We introduce LLMem, a solution that estimates the GPU memory consumption when applying distributed fine-tuning methods.
We show that LLMem accurately estimates peak GPU memory usage on a single GPU, with error rates of up to 1.6%.
arXiv Detail & Related papers (2024-04-16T22:11:35Z) - Cramming: Training a Language Model on a Single GPU in One Day [64.18297923419627]
Recent trends in language modeling have focused on increasing performance through scaling.
We investigate the downstream performance achievable with a transformer-based language model trained completely from scratch with masked language modeling for a single day on a single consumer GPU.
We provide evidence that even in this constrained setting, performance closely follows scaling laws observed in large-compute settings.
arXiv Detail & Related papers (2022-12-28T18:59:28Z) - EVEREST: Efficient Masked Video Autoencoder by Removing Redundant Spatiotemporal Tokens [57.354304637367555]
We present EVEREST, a surprisingly efficient MVA approach for video representation learning.
It finds tokens containing rich motion features and discards uninformative ones during both pre-training and fine-tuning.
Our method significantly reduces the computation and memory requirements of MVA.
arXiv Detail & Related papers (2022-11-19T09:57:01Z) - An Analysis of Collocation on GPUs for Deep Learning Training [0.0]
Multi-Instance GPU (MIG) is a new technology introduced by NVIDIA that can partition a GPU to better-fit workloads.
In this paper, we examine the performance of a MIG-enabled A100 GPU under deep learning workloads containing various sizes and combinations of models.
arXiv Detail & Related papers (2022-09-13T14:13:06Z) - PLSSVM: A (multi-)GPGPU-accelerated Least Squares Support Vector Machine [68.8204255655161]
Support Vector Machines (SVMs) are widely used in machine learning.
However, even modern and optimized implementations do not scale well for large non-trivial dense data sets on cutting-edge hardware.
PLSSVM can be used as a drop-in replacement for an LVM.
arXiv Detail & Related papers (2022-02-25T13:24:23Z) - Adaptive Elastic Training for Sparse Deep Learning on Heterogeneous
Multi-GPU Servers [65.60007071024629]
We show that Adaptive SGD outperforms four state-of-the-art solutions in time-to-accuracy.
We show experimentally that Adaptive SGD outperforms four state-of-the-art solutions in time-to-accuracy.
arXiv Detail & Related papers (2021-10-13T20:58:15Z) - RTGPU: Real-Time GPU Scheduling of Hard Deadline Parallel Tasks with
Fine-Grain Utilization [5.02836935036198]
We propose RTGPU, which can schedule the execution of multiple GPU applications in real-time to meet hard deadlines.
Our approach provides superior schedulability compared with previous work, and gives real-time guarantees to meet hard deadlines for multiple GPU applications.
arXiv Detail & Related papers (2021-01-25T22:34:06Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
Kernel methods provide an elegant and principled approach to nonparametric learning, but so far could hardly be used in large scale problems.
Recent advances have shown the benefits of a number of algorithmic ideas, for example combining optimization, numerical linear algebra and random projections.
Here, we push these efforts further to develop and test a solver that takes full advantage of GPU hardware.
arXiv Detail & Related papers (2020-06-18T08:16:25Z) - Out-of-Core GPU Gradient Boosting [0.0]
We show that much larger datasets can fit on a given GPU, without degrading model accuracy or training time.
This is the first out-of-core GPU implementation of gradient boosting.
arXiv Detail & Related papers (2020-05-19T00:41:00Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
This work introduces a new MAP-solver, based on the popular Dual Block-Coordinate Ascent principle.
Surprisingly, by making a small change to the low-performing solver, we derive the new solver MPLP++ that significantly outperforms all existing solvers by a large margin.
arXiv Detail & Related papers (2020-04-16T16:20:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.