Universal non-thermal fixed point for quasi-1D Bose gases
- URL: http://arxiv.org/abs/2505.20213v1
- Date: Mon, 26 May 2025 16:54:48 GMT
- Title: Universal non-thermal fixed point for quasi-1D Bose gases
- Authors: Qi Liang, RuGway Wu, Pradyumna Paranjape, Ben Schittenkopf, Chen Li, Jörg Schmiedmayer, Sebastian Erne,
- Abstract summary: Experimental studies in weakly-interacting cold atom systems have found scaling dynamics connected to specific attractors.<n>Our results point to a single universal fixed point with a large basin of attraction governing the relaxation of quasi-1D bosonic systems.
- Score: 2.9012954414272176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatio-temporal scaling dynamics connected to non-thermal fixed points has been suggested as a universal framework to describe the relaxation of isolated far-from-equilibrium systems. Experimental studies in weakly-interacting cold atom systems have found scaling dynamics connected to specific attractors. In our experiments, we study a quantum gas of strongly interacting $^6$Li$_2$ Feshbach molecules, brought far out of equilibrium by imprinting a white-noise phase profile. The observed relaxation follows the same universal dynamics as for the previously observed formation of the order parameter in a shock-cooled gas of weakly interacting $^{87}$Rb atoms. Our results point to a single universal fixed point with a large basin of attraction governing the relaxation of quasi-1D bosonic systems, independent of their specific initial conditions and microscopic details.
Related papers
- Dynamics of the unitary Bose gas near a narrow Feshbach resonance: universal coherent atom-molecule oscillations [6.676897456266681]
We study a very narrow Feshbach resonance of $133$Cs atoms having a width of 8.3 mG.
A rapid quench of an atomic condensate to unit leads to coherent oscillations involving dynamically produced condensed and non-condensed molecules and atoms.
The same characteristic frequency, determined by the Feshbach coupling, is observed in all types of particles.
arXiv Detail & Related papers (2024-08-15T20:48:31Z) - Observation of Hilbert-space fragmentation and fractonic excitations in two-dimensional Hubbard systems [0.0]
We experimentally observe Hilbert space fragmentation (HSF) in a two-dimensional tilted Bose-Hubbard model.
We find uniform initial states with equal particle number and energy differ strikingly in their relaxation dynamics.
Our results mark the first observation of HSF beyond one dimension, as well as the concomitant direct observation of fractons.
arXiv Detail & Related papers (2024-04-23T10:22:40Z) - Directional superradiance in a driven ultracold atomic gas in free-space [0.0]
We study a dense ensemble illuminated by a strong coherent drive while interacting via dipole-dipole interactions.
Although the steady-state features some similarities to the reported superradiant to normal non-induced transition, we observe significant qualitative and quantitative differences.
We develop a simple theoretical model that explains the scaling properties by accounting for interaction-equilibrium inhomogeneous effects and spontaneous emission.
arXiv Detail & Related papers (2024-03-22T18:14:44Z) - Universal Coarsening in a Homogeneous Two-Dimensional Bose Gas [0.0]
Coarsening of an isolated far-from-equilibrium quantum system is a paradigmatic many-body phenomenon.
We observe universal scaling in the coarsening of a homogeneous two-dimensional Bose gas, with exponents that match analytical predictions.
arXiv Detail & Related papers (2023-12-14T18:59:31Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Collective flow of fermionic impurities immersed in a Bose-Einstein Condensate [34.82692226532414]
We study the collective oscillations of spin-polarized fermionic impurities immersed in a Bose-Einstein condensate.
For strong interactions, the Fermi gas perfectly mimics the superfluid hydrodynamic modes of the condensate.
With an increasing number of bosonic thermal excitations, the dynamics of the impurities cross over from the collisionless to the hydrodynamic regime.
arXiv Detail & Related papers (2023-04-16T00:58:05Z) - Universal features of entanglement entropy in the honeycomb Hubbard
model [44.99833362998488]
This paper introduces a new method to compute the R'enyi entanglement entropy in auxiliary-field quantum Monte Carlo simulations.
We demonstrate the efficiency of this method by extracting, for the first time, universal subleading logarithmic terms in a two dimensional model of interacting fermions.
arXiv Detail & Related papers (2022-11-08T15:52:16Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Steady-state Fano coherences in a V-type system driven by polarized
incoherent light [0.0]
We explore the properties of steady-state Fano coherences generated in a three-level V-system continuously pumped by polarized incoherent light.
We attribute the surprising dephasing-induced enhancement of stationary Fano coherences to the environmental suppression of destructive interference of individual incoherent excitations.
arXiv Detail & Related papers (2020-01-24T23:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.