The Mirage of Multimodality: Where Truth is Tested and Honesty Unravels
- URL: http://arxiv.org/abs/2505.20214v1
- Date: Mon, 26 May 2025 16:55:38 GMT
- Title: The Mirage of Multimodality: Where Truth is Tested and Honesty Unravels
- Authors: Jiaming Ji, Sitong Fang, Wenjing Cao, Jiahao Li, Xuyao Wang, Juntao Dai, Chi-Min Chan, Sirui Han, Yike Guo, Yaodong Yang,
- Abstract summary: This study is the first systematic investigation of distortions associated with System I and System II reasoning in multimodal contexts.<n>We demonstrate that slower reasoning models, when presented with incomplete or misleading visual inputs, are more likely to fabricate plausible yet false details to support flawed reasoning.
- Score: 22.497467057872377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reasoning models have recently attracted significant attention, especially for tasks that involve complex inference. Their strengths exemplify the System II paradigm (slow, structured thinking), contrasting with the System I (rapid, heuristic-driven). Yet, does slower reasoning necessarily lead to greater truthfulness? Our findings suggest otherwise. In this study, we present the first systematic investigation of distortions associated with System I and System II reasoning in multimodal contexts. We demonstrate that slower reasoning models, when presented with incomplete or misleading visual inputs, are more likely to fabricate plausible yet false details to support flawed reasoning -- a phenomenon we term the "Mirage of Multimodality". To examine this, we constructed a 5,000-sample hierarchical prompt dataset annotated by 50 human participants. These prompts gradually increase in complexity, revealing a consistent pattern: slower reasoning models tend to employ depth-first thinking (delving deeper into incorrect premises), whereas faster chat models favor breadth-first inference, exhibiting greater caution under uncertainty. Our results highlight a critical vulnerability of slower reasoning models: although highly effective in structured domains such as mathematics, it becomes brittle when confronted with ambiguous multimodal inputs.
Related papers
- GThinker: Towards General Multimodal Reasoning via Cue-Guided Rethinking [35.14983424309319]
We present GThinker, a novel reasoning MLLM excelling in multimodal reasoning across general scenarios, mathematics, and science.<n>GThinker introduces Cue-Rethinking, a flexible reasoning pattern that grounds inferences in visual cues and iteratively reinterprets these cues to resolve inconsistencies.<n>To support the training, we construct GThinker-11K, comprising 7K high-quality, iteratively-annotated reasoning paths and 4K curated reinforcement learning samples.
arXiv Detail & Related papers (2025-06-01T16:28:26Z) - More Thinking, Less Seeing? Assessing Amplified Hallucination in Multimodal Reasoning Models [43.465268635499754]
Test-time compute has empowered large language models to generate extended reasoning chains.<n>As generations become longer, models tend to drift away from image-grounded content and rely more heavily on language priors.
arXiv Detail & Related papers (2025-05-23T05:08:40Z) - Detection and Mitigation of Hallucination in Large Reasoning Models: A Mechanistic Perspective [11.013059864022667]
Reasoning Hallucinations are logically coherent but factually incorrect reasoning traces.<n>These errors are embedded within structured reasoning, making them more difficult to detect and potentially more harmful.<n>We propose the Reasoning Score, which quantifies the depth of reasoning by measuring the divergence between logits.<n>We also introduce GRPO-R, an enhanced reinforcement learning algorithm that incorporates step-level deep reasoning rewards via potential-based shaping.
arXiv Detail & Related papers (2025-05-19T09:16:40Z) - LongPerceptualThoughts: Distilling System-2 Reasoning for System-1 Perception [105.78609483419115]
We introduce LongPerceptualThoughts, a new synthetic dataset with 30K long-thought traces for perceptual tasks.<n>We propose a novel three-stage data synthesis framework that first synthesizes verifiable multiple-choice questions.<n>We demonstrate notable improvements over existing visual reasoning data-generation methods.
arXiv Detail & Related papers (2025-04-21T18:10:38Z) - Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks.<n>Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains.<n>This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs.
arXiv Detail & Related papers (2025-04-04T04:04:56Z) - Multimodal Inconsistency Reasoning (MMIR): A New Benchmark for Multimodal Reasoning Models [26.17300490736624]
Multimodal Large Language Models (MLLMs) are predominantly trained and tested on consistent visual-textual inputs.<n>We propose the Multimodal Inconsistency Reasoning benchmark to assess MLLMs' ability to detect and reason about semantic mismatches.<n>We evaluate six state-of-the-art MLLMs, showing that models with dedicated multimodal reasoning capabilities, such as o1, substantially outperform their counterparts.
arXiv Detail & Related papers (2025-02-22T01:52:37Z) - Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.<n>Models may behave unreliably due to poorly explored failure modes.<n> causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - Visual-O1: Understanding Ambiguous Instructions via Multi-modal Multi-turn Chain-of-thoughts Reasoning [53.45295657891099]
This paper proposes Visual-O1, a multi-modal multi-turn chain-of-thought reasoning framework.
It simulates human multi-modal multi-turn reasoning, providing instantial experience for highly intelligent models.
Our work highlights the potential of artificial intelligence to work like humans in real-world scenarios with uncertainty and ambiguity.
arXiv Detail & Related papers (2024-10-04T11:18:41Z) - Boosting the Power of Small Multimodal Reasoning Models to Match Larger Models with Self-Consistency Training [49.3242278912771]
Multimodal reasoning is a challenging task that requires models to reason across multiple modalities to answer questions.
Existing approaches have made progress by incorporating language and visual modalities into a two-stage reasoning framework.
We propose MC-CoT, a self-consistency training strategy that generates multiple rationales and answers, subsequently selecting the most accurate through a voting process.
arXiv Detail & Related papers (2023-11-23T17:09:48Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [31.238220405009617]
Exploiting large language models (LLMs) to tackle reasoning has garnered growing attention.<n>It still remains highly challenging to achieve satisfactory results in complex logical problems, characterized by plenty of premises within the context and requiring multi-hop reasoning.<n>In this work, we first examine the mechanism from the perspective of information flow and reveal that LLMs confront difficulties akin to human-like cognitive biases when dealing with disordered and irrelevant content in reasoning tasks.
arXiv Detail & Related papers (2023-10-05T04:47:49Z) - Visual Chain of Thought: Bridging Logical Gaps with Multimodal
Infillings [61.04460792203266]
We introduce VCoT, a novel method that leverages chain-of-thought prompting with vision-language grounding to bridge the logical gaps within sequential data.
Our method uses visual guidance to generate synthetic multimodal infillings that add consistent and novel information to reduce the logical gaps for downstream tasks.
arXiv Detail & Related papers (2023-05-03T17:58:29Z) - Causal Triplet: An Open Challenge for Intervention-centric Causal
Representation Learning [98.78136504619539]
Causal Triplet is a causal representation learning benchmark featuring visually more complex scenes.
We show that models built with the knowledge of disentangled or object-centric representations significantly outperform their distributed counterparts.
arXiv Detail & Related papers (2023-01-12T17:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.