Chain-of-Thought for Autonomous Driving: A Comprehensive Survey and Future Prospects
- URL: http://arxiv.org/abs/2505.20223v1
- Date: Mon, 26 May 2025 17:06:00 GMT
- Title: Chain-of-Thought for Autonomous Driving: A Comprehensive Survey and Future Prospects
- Authors: Yixin Cui, Haotian Lin, Shuo Yang, Yixiao Wang, Yanjun Huang, Hong Chen,
- Abstract summary: Chain-of-Thought (CoT) reasoning is an advanced cognitive method that simulates human thinking processes.<n>This paper investigates how CoT methods improve the reasoning abilities of autonomous driving models.
- Score: 13.655659915158633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid evolution of large language models in natural language processing has substantially elevated their semantic understanding and logical reasoning capabilities. Such proficiencies have been leveraged in autonomous driving systems, contributing to significant improvements in system performance. Models such as OpenAI o1 and DeepSeek-R1, leverage Chain-of-Thought (CoT) reasoning, an advanced cognitive method that simulates human thinking processes, demonstrating remarkable reasoning capabilities in complex tasks. By structuring complex driving scenarios within a systematic reasoning framework, this approach has emerged as a prominent research focus in autonomous driving, substantially improving the system's ability to handle challenging cases. This paper investigates how CoT methods improve the reasoning abilities of autonomous driving models. Based on a comprehensive literature review, we present a systematic analysis of the motivations, methodologies, challenges, and future research directions of CoT in autonomous driving. Furthermore, we propose the insight of combining CoT with self-learning to facilitate self-evolution in driving systems. To ensure the relevance and timeliness of this study, we have compiled a dynamic repository of literature and open-source projects, diligently updated to incorporate forefront developments. The repository is publicly available at https://github.com/cuiyx1720/Awesome-CoT4AD.
Related papers
- Generative AI for Autonomous Driving: Frontiers and Opportunities [145.6465312554513]
This survey delivers a comprehensive synthesis of the emerging role of GenAI across the autonomous driving stack.<n>We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models.<n>We categorize practical applications, such as synthetic data generalization, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI.
arXiv Detail & Related papers (2025-05-13T17:59:20Z) - The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey [50.62538723793247]
Driving World Model (DWM) focuses on predicting scene evolution during the driving process.<n>DWM methods enable autonomous driving systems to better perceive, understand, and interact with dynamic driving environments.
arXiv Detail & Related papers (2025-02-14T18:43:15Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.<n>This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - PKRD-CoT: A Unified Chain-of-thought Prompting for Multi-Modal Large Language Models in Autonomous Driving [8.971981009717284]
This study explores a seamless integration of MLLMs into autonomous driving systems by proposing a Zero-Shot Chain-of-Thought prompt design named PKRD-CoT.<n>Our design enables MLLMs to tackle problems without prior experience, thereby increasing their utility within unstructured autonomous driving environments.
arXiv Detail & Related papers (2024-12-02T23:08:38Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - Towards Knowledge-driven Autonomous Driving [37.003908817857095]
This paper explores the emerging knowledge-driven autonomous driving technologies.
Our investigation highlights the limitations of current autonomous driving systems.
Knowledge-driven methods with the abilities of cognition, generalization and life-long learning emerge as a promising way to overcome these challenges.
arXiv Detail & Related papers (2023-12-07T14:17:17Z) - Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving [38.28159034562901]
Reason2Drive is a benchmark dataset with over 600K video-text pairs.
We characterize the autonomous driving process as a sequential combination of perception, prediction, and reasoning steps.
We introduce a novel aggregated evaluation metric to assess chain-based reasoning performance in autonomous systems.
arXiv Detail & Related papers (2023-12-06T18:32:33Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Drive Anywhere: Generalizable End-to-end Autonomous Driving with
Multi-modal Foundation Models [114.69732301904419]
We present an approach to apply end-to-end open-set (any environment/scene) autonomous driving that is capable of providing driving decisions from representations queryable by image and text.
Our approach demonstrates unparalleled results in diverse tests while achieving significantly greater robustness in out-of-distribution situations.
arXiv Detail & Related papers (2023-10-26T17:56:35Z) - Reinforcement Learning for Autonomous Driving with Latent State
Inference and Spatial-Temporal Relationships [46.965260791099986]
We show that explicitly inferring the latent state and encoding spatial-temporal relationships in a reinforcement learning framework can help address this difficulty.
We encode prior knowledge on the latent states of other drivers through a framework that combines the reinforcement learner with a supervised learner.
The proposed framework significantly improves performance in the context of navigating T-intersections compared with state-of-the-art baseline approaches.
arXiv Detail & Related papers (2020-11-09T08:55:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.