Measure Domain's Gap: A Similar Domain Selection Principle for Multi-Domain Recommendation
- URL: http://arxiv.org/abs/2505.20227v1
- Date: Mon, 26 May 2025 17:07:31 GMT
- Title: Measure Domain's Gap: A Similar Domain Selection Principle for Multi-Domain Recommendation
- Authors: Yi Wen, Yue Liu, Derong Xu, Huishi Luo, Pengyue Jia, Yiqing Wu, Siwei Wang, Ke Liang, Maolin Wang, Yiqi Wang, Fuzhen Zhuang, Xiangyu Zhao,
- Abstract summary: Multi-Domain Recommendation (MDR) achieves the desirable recommendation performance by effectively utilizing the transfer information across different domains.<n>We propose a simple and dynamic Similar Domain Selection Principle (SDSP) for multi-domain recommendation in this paper.<n>We emphasize that SDSP is a lightweight method that can be incorporated with existing MDR methods for better performance while not introducing excessive time overheads.
- Score: 51.74051587372479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Domain Recommendation (MDR) achieves the desirable recommendation performance by effectively utilizing the transfer information across different domains. Despite the great success, most existing MDR methods adopt a single structure to transfer complex domain-shared knowledge. However, the beneficial transferring information should vary across different domains. When there is knowledge conflict between domains or a domain is of poor quality, unselectively leveraging information from all domains will lead to a serious Negative Transfer Problem (NTP). Therefore, how to effectively model the complex transfer relationships between domains to avoid NTP is still a direction worth exploring. To address these issues, we propose a simple and dynamic Similar Domain Selection Principle (SDSP) for multi-domain recommendation in this paper. SDSP presents the initial exploration of selecting suitable domain knowledge for each domain to alleviate NTP. Specifically, we propose a novel prototype-based domain distance measure to effectively model the complexity relationship between domains. Thereafter, the proposed SDSP can dynamically find similar domains for each domain based on the supervised signals of the domain metrics and the unsupervised distance measure from the learned domain prototype. We emphasize that SDSP is a lightweight method that can be incorporated with existing MDR methods for better performance while not introducing excessive time overheads. To the best of our knowledge, it is the first solution that can explicitly measure domain-level gaps and dynamically select appropriate domains in the MDR field. Extensive experiments on three datasets demonstrate the effectiveness of our proposed method.
Related papers
- One for Dozens: Adaptive REcommendation for All Domains with Counterfactual Augmentation [32.945861240561]
Multi-domain recommendation (MDR) aims to enhance recommendation performance across various domains.<n>Traditional MDR algorithms typically focus on fewer than five domains.<n>We propose Adaptive REcommendation for All Domains with counterfactual augmentation.
arXiv Detail & Related papers (2024-12-16T15:52:17Z) - DAOT: Domain-Agnostically Aligned Optimal Transport for Domain-Adaptive
Crowd Counting [35.83485358725357]
Domain adaptation is commonly employed in crowd counting to bridge the domain gaps between different datasets.
Existing domain adaptation methods tend to focus on inter-dataset differences while overlooking the intra-differences within the same dataset.
We propose a Domain-agnostically Aligned Optimal Transport (DAOT) strategy that aligns domain-agnostic factors between domains.
arXiv Detail & Related papers (2023-08-10T02:59:40Z) - Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation [3.367755441623275]
Multi-source unsupervised domain adaptation (MUDA) aims to transfer knowledge from related source domains to an unlabeled target domain.
We propose a novel approach called Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation (D3AAMDA)
This mechanism controls the alignment level of features between each source domain and the target domain, effectively leveraging the local advantageous feature information within the source domains.
arXiv Detail & Related papers (2023-07-26T09:40:19Z) - IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID [58.46907388691056]
We argue that the bridging between the source and target domains can be utilized to tackle the UDA re-ID task.
We propose an Intermediate Domain Module (IDM) to generate intermediate domains' representations on-the-fly.
Our proposed method outperforms the state-of-the-arts by a large margin in all the common UDA re-ID tasks.
arXiv Detail & Related papers (2021-08-05T07:19:46Z) - Domain Consistency Regularization for Unsupervised Multi-source Domain
Adaptive Classification [57.92800886719651]
Deep learning-based multi-source unsupervised domain adaptation (MUDA) has been actively studied in recent years.
domain shift in MUDA exists not only between the source and target domains but also among multiple source domains.
We propose an end-to-end trainable network that exploits domain Consistency Regularization for unsupervised Multi-source domain Adaptive classification.
arXiv Detail & Related papers (2021-06-16T07:29:27Z) - FixBi: Bridging Domain Spaces for Unsupervised Domain Adaptation [26.929772844572213]
We introduce a fixed ratio-based mixup to augment multiple intermediate domains between the source and target domain.
We train the source-dominant model and the target-dominant model that have complementary characteristics.
Through our proposed methods, the models gradually transfer domain knowledge from the source to the target domain.
arXiv Detail & Related papers (2020-11-18T11:58:19Z) - Domain2Vec: Domain Embedding for Unsupervised Domain Adaptation [56.94873619509414]
Conventional unsupervised domain adaptation studies the knowledge transfer between a limited number of domains.
We propose a novel Domain2Vec model to provide vectorial representations of visual domains based on joint learning of feature disentanglement and Gram matrix.
We demonstrate that our embedding is capable of predicting domain similarities that match our intuition about visual relations between different domains.
arXiv Detail & Related papers (2020-07-17T22:05:09Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Multi-Domain Spoken Language Understanding Using Domain- and Task-Aware
Parameterization [78.93669377251396]
Spoken language understanding has been addressed as a supervised learning problem, where a set of training data is available for each domain.
One existing approach solves the problem by conducting multi-domain learning, using shared parameters for joint training across domains.
We propose to improve the parameterization of this method by using domain-specific and task-specific model parameters.
arXiv Detail & Related papers (2020-04-30T15:15:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.