Outcome-Based Online Reinforcement Learning: Algorithms and Fundamental Limits
- URL: http://arxiv.org/abs/2505.20268v2
- Date: Thu, 24 Jul 2025 14:21:12 GMT
- Title: Outcome-Based Online Reinforcement Learning: Algorithms and Fundamental Limits
- Authors: Fan Chen, Zeyu Jia, Alexander Rakhlin, Tengyang Xie,
- Abstract summary: Reinforcement learning with outcome-based feedback faces a fundamental challenge.<n>How do we assign credit to the right actions?<n>This paper provides the first comprehensive analysis of this problem in online RL with general function approximation.
- Score: 58.63897489864948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning with outcome-based feedback faces a fundamental challenge: when rewards are only observed at trajectory endpoints, how do we assign credit to the right actions? This paper provides the first comprehensive analysis of this problem in online RL with general function approximation. We develop a provably sample-efficient algorithm achieving $\widetilde{O}({C_{\rm cov} H^3}/{\epsilon^2})$ sample complexity, where $C_{\rm cov}$ is the coverability coefficient of the underlying MDP. By leveraging general function approximation, our approach works effectively in large or infinite state spaces where tabular methods fail, requiring only that value functions and reward functions can be represented by appropriate function classes. Our results also characterize when outcome-based feedback is statistically separated from per-step rewards, revealing an unavoidable exponential separation for certain MDPs. For deterministic MDPs, we show how to eliminate the completeness assumption, dramatically simplifying the algorithm. We further extend our approach to preference-based feedback settings, proving that equivalent statistical efficiency can be achieved even under more limited information. Together, these results constitute a theoretical foundation for understanding the statistical properties of outcome-based reinforcement learning.
Related papers
- Bellman Unbiasedness: Toward Provably Efficient Distributional Reinforcement Learning with General Value Function Approximation [8.378137704007038]
We present a regret analysis of distributional reinforcement learning with general value function approximation in a finite episodic Markov decision process setting.<n>We propose a provably efficient algorithm, $textttSF-LSVI$, that achieves a tight regret bound of $tildeO(d_E Hfrac32sqrtK)$ where $H$ is the horizon, $K$ is the number of episodes, and $d_E$ is the eluder dimension of a function class.
arXiv Detail & Related papers (2024-07-31T00:43:51Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Provably Efficient Representation Learning with Tractable Planning in
Low-Rank POMDP [81.00800920928621]
We study representation learning in partially observable Markov Decision Processes (POMDPs)
We first present an algorithm for decodable POMDPs that combines maximum likelihood estimation (MLE) and optimism in the face of uncertainty (OFU)
We then show how to adapt this algorithm to also work in the broader class of $gamma$-observable POMDPs.
arXiv Detail & Related papers (2023-06-21T16:04:03Z) - Offline Reinforcement Learning with Additional Covering Distributions [0.0]
We study learning optimal policies from a logged dataset, i.e., offline RL, with function approximation.
We show that sample-efficient offline RL for general MDPs is possible with only a partial coverage dataset and weak realizable function classes.
arXiv Detail & Related papers (2023-05-22T03:31:03Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
We study reinforcement learning for partially observed decision processes (POMDPs) with infinite observation and state spaces.
We make the first attempt at partial observability and function approximation for a class of POMDPs with a linear structure.
arXiv Detail & Related papers (2022-04-20T21:15:38Z) - Stochastic convex optimization for provably efficient apprenticeship
learning [1.0609815608017066]
We consider large-scale Markov decision processes (MDPs) with an unknown cost function.
We employ convex optimization tools to address the problem of imitation learning, which consists of learning a policy from a finite set of expert demonstrations.
arXiv Detail & Related papers (2021-12-31T19:47:57Z) - Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration [143.43658264904863]
We show how iteration under a more standard notion of low inherent Bellman error, typically employed in least-square value-style algorithms, can provide strong PAC guarantees on learning a near optimal value function.
We present a computationally tractable algorithm for the reward-free setting and show how it can be used to learn a near optimal policy for any (linear) reward function.
arXiv Detail & Related papers (2020-08-18T04:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.