EgoZero: Robot Learning from Smart Glasses
- URL: http://arxiv.org/abs/2505.20290v2
- Date: Tue, 03 Jun 2025 22:50:28 GMT
- Title: EgoZero: Robot Learning from Smart Glasses
- Authors: Vincent Liu, Ademi Adeniji, Haotian Zhan, Siddhant Haldar, Raunaq Bhirangi, Pieter Abbeel, Lerrel Pinto,
- Abstract summary: EgoZero learns robust manipulation policies from human demonstrations captured with Project Aria smart glasses.<n>We deploy EgoZero policies on a Franka Panda robot and demonstrate zero-shot transfer with 70% success rate over 7 manipulation tasks.<n>Our results suggest that in-the-wild human data can serve as a scalable foundation for real-world robot learning.
- Score: 54.6168258133554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent progress in general purpose robotics, robot policies still lag far behind basic human capabilities in the real world. Humans interact constantly with the physical world, yet this rich data resource remains largely untapped in robot learning. We propose EgoZero, a minimal system that learns robust manipulation policies from human demonstrations captured with Project Aria smart glasses, $\textbf{and zero robot data}$. EgoZero enables: (1) extraction of complete, robot-executable actions from in-the-wild, egocentric, human demonstrations, (2) compression of human visual observations into morphology-agnostic state representations, and (3) closed-loop policy learning that generalizes morphologically, spatially, and semantically. We deploy EgoZero policies on a gripper Franka Panda robot and demonstrate zero-shot transfer with 70% success rate over 7 manipulation tasks and only 20 minutes of data collection per task. Our results suggest that in-the-wild human data can serve as a scalable foundation for real-world robot learning - paving the way toward a future of abundant, diverse, and naturalistic training data for robots. Code and videos are available at https://egozero-robot.github.io.
Related papers
- Generalizable Humanoid Manipulation with 3D Diffusion Policies [41.23383596258797]
We build a real-world robotic system to address the problem of autonomous manipulation by humanoid robots.<n>Our system is mainly an integration of 1) a whole-upper-body robotic teleoperation system to acquire human-like robot data, and 2) a 25-DoF humanoid robot platform with a height-adjustable cart and a 3D LiDAR sensor.<n>We show that using only data collected in one scene and with only onboard computing, a full-sized humanoid robot can autonomously perform skills in diverse real-world scenarios.
arXiv Detail & Related papers (2024-10-14T17:59:00Z) - HumanPlus: Humanoid Shadowing and Imitation from Humans [82.47551890765202]
We introduce a full-stack system for humanoids to learn motion and autonomous skills from human data.
We first train a low-level policy in simulation via reinforcement learning using existing 40-hour human motion datasets.
We then perform supervised behavior cloning to train skill policies using egocentric vision, allowing humanoids to complete different tasks autonomously.
arXiv Detail & Related papers (2024-06-15T00:41:34Z) - Towards Generalizable Zero-Shot Manipulation via Translating Human
Interaction Plans [58.27029676638521]
We show how passive human videos can serve as a rich source of data for learning such generalist robots.
We learn a human plan predictor that, given a current image of a scene and a goal image, predicts the future hand and object configurations.
We show that our learned system can perform over 16 manipulation skills that generalize to 40 objects.
arXiv Detail & Related papers (2023-12-01T18:54:12Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation.
Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation.
In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies.
arXiv Detail & Related papers (2023-07-12T07:04:53Z) - Affordances from Human Videos as a Versatile Representation for Robotics [31.248842798600606]
We train a visual affordance model that estimates where and how in the scene a human is likely to interact.
The structure of these behavioral affordances directly enables the robot to perform many complex tasks.
We show the efficacy of our approach, which we call VRB, across 4 real world environments, over 10 different tasks, and 2 robotic platforms operating in the wild.
arXiv Detail & Related papers (2023-04-17T17:59:34Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Open-World Object Manipulation using Pre-trained Vision-Language Models [72.87306011500084]
For robots to follow instructions from people, they must be able to connect the rich semantic information in human vocabulary.
We develop a simple approach, which leverages a pre-trained vision-language model to extract object-identifying information.
In a variety of experiments on a real mobile manipulator, we find that MOO generalizes zero-shot to a wide range of novel object categories and environments.
arXiv Detail & Related papers (2023-03-02T01:55:10Z) - Know Thyself: Transferable Visuomotor Control Through Robot-Awareness [22.405839096833937]
Training visuomotor robot controllers from scratch on a new robot typically requires generating large amounts of robot-specific data.
We propose a "robot-aware" solution paradigm that exploits readily available robot "self-knowledge"
Our experiments on tabletop manipulation tasks in simulation and on real robots demonstrate that these plug-in improvements dramatically boost the transferability of visuomotor controllers.
arXiv Detail & Related papers (2021-07-19T17:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.